
Decoupling transport channels in tokamaks:  
I-mode phenomenology and physics 

A. E. Hubbard,  
MIT Plasma Science and Fusion Center 

With thanks for input from  
I. Cziegler1 , S. Espinosa, T. Happel2, J. W. Hughes, B. LaBombard,  

Z. Liu3, P. Manz2, J. E. Rice, F. Ryter2, C. Theiler4, E. Viezzer2, A. White,  
T. Wilks and the Alcator C-Mod* and ASDEX Upgrade teams  

1York Plasma Institute, Univ.of York, UK,  
2IPP Garching, Germany. 

 3ASIPP, China. 4 EPFL, Swiss Plasma Center  
*Supported by the U.S. Dept. of Energy, Office of Fusion Energy Sciences 

21st International Stellarator-Heliotron Workshop (ISHW2017)  
October 2, 2017, Kyoto, Japan 



A. Hubbard, ISHW2017, Kyoto 
 

I-mode phenomenology and physics 
• What is “I-mode”?  Why of interest for fusion? How to access?  

 
• Evidence for separation of thermal and particle transport 

 
• Phenomenology:  Measurements of profiles, turbulence 

and flows on C-Mod and ASDEX Upgrade tokamaks 
 

• Physics:   Possible contributions to separation of transport 
channels  (for workshop discussion, still no definitive explanation) 

 
• Conclusions, questions, prospects 

  
   

2 



A. Hubbard, ISHW2017, Kyoto 
 

I-mode is a stationary, high energy confinement 
regime, w ithout a particle barrier 

• Temperature pedestal and high 
energy confinement. 

• L-mode density pedestal and low 
particle confinement. 
– Stationary, controlled densities. 
– Avoids accumulation of high or low Z 

impurities. 
• ELM-free, avoiding damaging heat 

pulses. ― Pedestals are MHD stable. 
• Highly attractive combination of 

features for fusion energy.   

3 

* Clarification:  This is NOT the same regime as the  transient Limit Cycle Oscillation 
phase between L and H-mode, sometimes known as “I-phase” . 

C-Mod  
Hubbard 
IAEA 2012 
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I-mode is accessed robustly on tokamaks with 
ion Bx∇B drift away from X-pt. 

• This configuration has long (since 
Wagner 1982) been known to have 
higher L-H power threshold, hence 
called ‘unfavourable’. 

• I-mode is accessed by slowly increasing 
input power, to below this higher L-H 
threshold (all results in this talk).   
o Some cases with “favourable” drift 

towards X-pt, with atypical shaping, but 
these are limited to low power. 

• Further increases in power can 
sometimes lead to I-H transitions. Power 
range varies with device parameters. 
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C-Mod  
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I-mode has been accessed in several tokamaks, over 
wide ranges of parameters:  Robust 

• Also observed on DIII-D ~2013 (Marinoni NF15), and very recently on EAST 
(Z. Liu H-mode workshop 2017).   ITPA comparison study in Hubbard NF 2016) 

• Together, I-mode discharges have used 
– Heating with ICRH, NBI, ECH and/or LH. 
– Mo, W and C PFCs. 
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• Most widely 
studied on 
Alcator C-Mod, 
ASDEX 
Upgrade (AUG) 
(hence focus in this 
talk). 

 
 

AUG Happel  PPCF 2017 
C-Mod  
Hubbard 
EPS 
2017 
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I-mode phenomenology and physics 
• What is “I-mode”? Why of interest for fusion? How to 

access?  
 

• Evidence for separation of thermal and particle 
transport 
 

• Phenomenology:  Measurements of profiles, turbulence 
and flows on C-Mod and ASDEX Upgrade tokamaks 
 

• Physics:   Possible contributions to separation of transport 
channels  (for workshop discussion, still no definitive explanation) 

 
• Conclusions, questions, prospects 
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At L-I transition, pedestal develops in Te, Ti.  
Density remains nearly unchanged. 

• Increasing Te, Ti, ∇T, at 
similar input power 
implies lower thermal 
transport than  
L-mode. 

• Constant ne, Dα imply 
~same main species 
particle transport as 
L-mode. 

• More quantitative 
estimates (to follow) 
support this. 
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AUG  
Ryter 
NF 2017 

C-Mod  
Hubbard  
IAEA14 

Temperature Density 
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I-mode also has high global energy confinement, 
low global impurity confinement 

• Range of H98,y2~0.6-1.2. correlating well 
with pedestal (ie stiff core profiles) 

• Weaker power degradation in I-mode: 
τE,Imode~ PL

-0.3   vs τITER98p ~ PL
-0.7  
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AUG  
Ryter NF 2017 

C-Mod  
see Rice  
NF 2015 
 
(τΙ for Ca, 
Mo are  
similar) 

Ca and Molybdenum 
injections 
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I-mode phenomenology and physics 
• What is “I-mode”? Why of interest for fusion? How to 

access?  
 

• Evidence for separation of thermal and particle transport 
 

• Phenomenology:  Measurements of profiles, 
turbulence and flows on C-Mod and ASDEX 
Upgrade tokamaks 
 

• Physics:   Possible contributions to separation of transport 
channels  (for workshop discussion, still no definitive explanation) 

 
• Conclusions, questions, prospects 
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Several characteristic changes in edge fluctuations, 
flows at L-I, I-H transitions 

At L-I transition, as T pedestal forms, see  
1. A DECREASE in edge broadband 

turbulence (n and B) in mid-f range  
(~60-150 kHz) 

2. Usually a PEAK in turbulence at higher f 
“Weakly Coherent Mode” (~200-400 
kHz on C-Mod). 

3. Fluctuating flow at GAM frequency.  
(10’s of kHz) 
 

At the I-H-mode (particle barrier) transition, 
remaining turbulence drops suddenly, density 
and impurities rise. 
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C-Mod 
Hubbard  
PoP 2011 

Reflectometry freq spectra 

WCM 
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Weakly Coherent Mode seen in density, 
magnetics, ECE, localized to barrier region 

• In most  I-modes, a higher frequency turbulence 
feature appears, simultaneous with mid-freq 
reduction.  On C-Mod:  f0 ~200-400 kHz,   
∆f/f ~0.3-1 

• Fluctuations seen in B (magnetics),  Density and 
Electron Temperature (ECE).  
 δTe/Te  1-1.6% < δne/ne  6-13%.    
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Cziegler PoP 2013,        White, NF 2011  

• All diagnostics  localize WCM to the 
region of T pedestal.   
(0.9 < r/a < 1.0)  

• 2-D Gas Puff Imaging  
reveals WCM details: 
– kpol ~ 1.5 cm-1  (k┴ ρs~ 0.1) 
– Propagation in electron 

diamagnetic direction 
 

 

C-Mod 
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Now clear that GAM is also important, and 
interacts with WCM in complex ways 

• Fluctuating flow vθ at GAM frequency appears only 
in I-mode on C-Mod, also in L-mode on AUG.  A 
density,     fluctuation at similar frequency  
(10’s of kHz) is sometimes measured. 

• In both tokamaks, bispectral analysis shows  
GAM exchanges energy with the WCM, leading to its 
broad δf/f. 
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AUG  
Manz, NF 2015 

C-Mod 
Cziegler
PoP 
2013 

B
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Density fluctuations are strongly intermittent 
during I-mode  

• Recent AUG measurements show  
I-mode has lower base-level of 
fluctuations than L-mode, but exhibits 
strong irregularly spaced ‘solitary’ bursts 
(intermittency). 

• At all measured structure sizes  
(k⊥ = 5-12 cm-1): Low fluctuation 
amplitudes decrease, while large 
fluctuation amplitudes increase  
(PDF broadens).  Note bursts extend 
to larger k than WCM (k⊥ ~ 15 cm-1). 

• Intermittency increases with ∇T. 

 
 

 

T. Happel et al, NF 56 064004 (2016) 
T. Happel et al, PPCF 59 014004 (2017) 
P. Manz et al, NF 57 086022 (2017) 

AUG 

Doppler reflectometry 

Event Size  
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Density ‘bursts’ are connected to WCM,  
and to radiation at divertor.  

T. Happel et al, PPCF 59 014004 (2017) 

precursor 
Events 

AUG • Intermittent events are preceded 
by smaller density perturbations. 

• Δt of precursor events 
corresponds to 1/fWCM 
 
 

 

∆t~10 µs 
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Density ‘bursts’ are connected to WCM,  
and to radiation at divertor.  

main burst 
precursor 

events 

AUG • Intermittent events are preceded 
by smaller density perturbations. 

• Δt of precursor events 
corresponds to 1/fWCM 
 

• Bolometry signal in divertor is 
correlated with fluctuation 
amplitude, with a time delay. 
– Suggests a particle flux from 

inside separatrix.   
 

 

T. Happel et al, PPCF 59 014004 (2017) 
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Er well develops during I-modes 

 

• Builds up gradually along with Tped 
• ExB shear greatest in outer region. 
• Steeper, deeper well than L-mode.  
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AUG  
Happel  
PPCF 17 

C-Mod 
Hubbard  
EPS17 
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Er well develops during I-modes 

• ExB shear greatest in outer region. 
• Steeper, deeper well  than L-mode. 
• But, Ermin less than most H-modes.   
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C-Mod 
Hubbard  
EPS17 

AUG  
Happel  
PPCF 17 
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WCM and low freq GAM fluctuations are localized 
in the Er well, extend to near separatrix

18

• WCM and GAM have similar radial extent. 

• In Er well, peaked in outer shear layer.  

• Still detected near separatrix. 

C-Mod
Cziegler 
PoP 2013, 
Theiler 
PPCF 2017 
Wilks 
HMW17
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WCM and low freq GAM fluctuations are localized 
in the Er well, extend to near separatrix
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• WCM and GAM have similar radial extent. 

• In Er well, peaked in outer shear layer.  

• Still detected near separatrix. 

C-Mod
Cziegler 
PoP 2013, 
Theiler 
PPCF 2017 
Wilks 
HMW17

• Mode location is important since Te,sep is always 
low (~100 eV, SOL physics), while ne,sep can be 
relatively high.

• Any mode near LCFS would be expected to 
drive more particle than heat flux.
(This has been measured with probes for EDA 
H-mode. LaBombard PoP 2014)

• Further studies of radial location and extent of 
turbulent features in I-mode would be valuable 
– and are a diagnostic challenge!



A. Hubbard, ISHW2017, Kyoto 
 

Decrease in edge thermal conductivity correlates 
with reduction in mid-f turbulence 

• At transition from L to I-mode edge 
∇T steepens, at near-constant Pnet and 
edge ne ⇒ Edge χeff is decreasing. 
Edge power balance: χeff 0.6->0.2 m2/s . 

• Edge χeff  correlates well to  the drop 
in mid-f turbulence.   
(~60-150 kHz) from reflectometry 

• Further, fast, drops are seen in both 
turbulence and χeff at I-H transitions. 

• Consistent with (but does not prove) this 
mid-freq  turbulence playing a key role in 
thermal transport. 
 

 
 

C-Mod 
Hubbard  
PoP 2011 
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Edge particle flux correlates with  
amplitude of Weakly Coherent Mode 

• Relative amplitude of WCM 
from edge reflectometer. 
 

• Edge particle flux ΓLCFS 
derived from calibrated Dα 
imaging near the outboard 
midplane. 
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C-Mod  A. Dominguez, MIT Ph.D 2012.  
2012 

• Correlation with ΓLCFS is consistent with (does not prove) the WCM playing a 
role in driving particle transport, perhaps helping avoid transition to H-mode.   
Caveats: ΓLCFS  analysis was only done for a few discharges.   Have not tried 
similar correlations for recently observed turbulence features (eg GAM, bursts) 
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I-mode phenomenology and physics 
• What is “I-mode”? Why of interest for fusion? How to 

access?  
 

• Evidence for separation of thermal and particle transport 
 

• Phenomenology:  Measurements of profiles, turbulence 
and flows on C-Mod and ASDEX Upgrade tokamaks 
 

• Physics:   Possible contributions to separation of 
transport channels   
(for workshop discussion, still no definitive explanation) 

 
• Conclusions, questions, prospects 
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Physics picture(s) of I-mode 
Need to explain many puzzling observations, eg.: 
• Several complex, closely related changes in turbulence and flows 

(WCM, GAM and low frequency density fluctuation, intermittent ne bursts 
with precursors (δt~1/fWCM), mid-frequency decrease.) 

• Relatively gradual decrease in thermal transport, and development of 
Er well. 

• Particle transport (electrons, impurities, likely main species) all 
remaining close to L-mode levels; no barrier ever develops. 

• I-mode depends on Bx∇B direction, which should be away from X-point; 
Configuration towards X-pt usually gives direct L-H transition, at lower P.   

• Weak BT dependence of P(L-I), vs strong for P(L-H).    

Not yet an explanation for all this.   Will discuss ideas, and ongoing 
modeling, from several colleagues.    Perspectives are my own.   

23 



A. Hubbard, ISHW2017, Kyoto 
 

Role of  Er × B shear in decreasing turbulence, 
thermal transport. 

• Er well is developing in I-mode, together with temperature gradient, and 
correlated reduction in mid-frequency turbulence.  

• Qualitatively consistent with reduction in pedestal  χ  due to ExB shear, as 
is thought to be happening in L-H transition.    

24 
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Role of  Er × B shear in decreasing turbulence, 
thermal transport. 

• Er well is developing in I-mode, together with temperature gradient, and 
correlated reduction in mid-frequency turbulence.  

• Qualitatively consistent with reduction in pedestal  χ  due to ExB shear, as 
is thought to be happening in L-H transition.    
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Open questions, and differences to L-H transition: 
• Why does L-I transition happen so slowly, evolving over ~10-100 ms? (vs µs)  
• Why not a strong positive feedback loop and sharp bifurcation as in L-H 

transition?      Does that require a particle barrier?   
Why would Er shear not affect the particle channel in this case?? 

• How do critical Er quantities (eg ωExB, γE, Er,min,V┴=Er/B) in I-mode compare to 
values at L-H transition?  How does magnetic configuration influence them? 

Answers could help understand L-H as well as L-I, I-H physics! 
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Turbulence nonlinearities could explain 
intermittent density ‘bursts’, linked to WCM 

• Recall intermittent ‘solitary’ bursts are seen at all scales, extend to higher k than 
WCM.   And, WCM is modulated.  

Possible explanation, by Happel, Manz (IPP): 
• Apparently highly nonlinear turbulent interactions involving WCM, GAM, ‘bursts’ ; we 

could qualitatively consider I-mode as being at the boundary between laminar 
and turbulent (L-mode) flow , which is known to produce intermittency.  

• 2-D drift wave equations contain nonlinearities which could give intermittent 
behavior: 
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For details, see T. Happel et al., Nucl. Fusion 56 (2016) 064004 and P. Manz et al., Nucl. 
Fusion 57 (2017) 086022.  
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Turbulence nonlinearities could explain 
intermittent density ‘bursts’, linked to WCM 

• Several sub-terms in this nonlinear interaction (of KdV or Burgers’ type).  
• A term of particular interest for I-mode is amplified by radial 

temperature gradient.    Note the intermittency measured on  
AUG increased with pedestal ∇T. 

• This gives particle and heat transport in different directions.  
Γ is outward and larger 
 
 
Heat flux q is inward and small       
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For details, see T. Happel et al., Nucl. Fusion 56 (2016) 064004 and P. Manz et al., Nucl. 
Fusion 57 (2017) 086022.  
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Turbulence nonlinearities could explain 
intermittent density ‘bursts’, linked to WCM 

• Several sub-terms in this nonlinear interaction (of KdV or Burgers’ type).  
• A term of particular interest for I-mode is amplified by radial 

temperature gradient.    Note the intermittency measured on  
AUG increased with pedestal ∇T. 

• This gives particle and heat transport in different directions.  
Γ is outward and larger 
 
Heat flux q is inward and small       
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• Model qualitatively fits with several observed features of I-mode. Remains 
to assess fluxes quantitatively.  There should also be bursts in T, which 
are hard to measure. 
 

• How would this model relate to Er, and to I-mode threshold conditions? 
 

• Why does particle transport end up just at L-mode levels? 
 

• Why does Bx∇B drift direction matter? 
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Transfer from turbulence to zonal flows is 2x lower with 
B×∇B away from X-pt, opening an I-mode power window  

• Prior work has shown L-H transition occurs when energy transfer rate into ZF exceeds 
turbulent drive. [Manz PoP12, Yan PRL14, Cziegler PoP 14,NF15]  

• Measured transfer rate in the configuration with B×∇B away from X-pt 
(“unfavourable”) is only half the rate towards X-pt (“Favourable”)   =>higher 
H-mode power threshold!    
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C-Mod I. Cziegler, York, PRL 118, 105003 2017 

Opens a power window for I-mode.  
In the I-mode, energy is transferred to 
GAMs as well as ZFs 

Somehow, even in L-mode, 
nonlinear turbulence-flow 
interactions depend on 
magnetic configuration.  Why? 
Related to mean flows, SOL? 
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Simulations of I-mode pedestals 

• BOUT++ (6-field 2-fluid) model used to simulate a high ne, 5.8 T C-Mod I-mode. 
• Linear simulations show Drive Alfven, Resistive ballooning mode dominate. 
• Nonlinear simulations find a mode with many features of WCM  (n=20, 350 kHz, 

electron diamagnetic direction). Predicts larger particle diffusivity than thermal, 
consistent with the key feature of I-mode. Predicted χeff, Γ are  close to expt. 
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C-Mod 
Z. Liu 
(ASIPP) 
PoP  2016. 
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Simulations of I-mode pedestals 

• BOUT++ (6-field 2-fluid) model used to simulate a high ne, 5.8 T C-Mod I-mode. 
• Linear simulations show Drive Alfven, Resistive ballooning mode dominate. 
• Nonlinear simulations find a mode with many features of WCM  (n=20, 350 kHz, 

electron diamagnetic direction). Predicts larger particle diffusivity than thermal, 
consistent with the key feature of I-mode.  Predicted χeff, Γ are  close to expt. 
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C-Mod 
Z. Liu 
(ASIPP) 
PoP  2016. 
  
 

• These initial runs set equilibrium ZF to zero, cannot capture interaction with 
GAM which seems important in experiment.   

― Extensions to include flows are in progress. 
 

• Other groups are working on gyrokinetic simulations of I-mode pedestal (U. 
Texas), and of L-I transitions (C.S. Chang et al, PPPL).  

• More such simulation work, over the evolution from L to I-mode and for a 
range of plasma parameters, is needed.   
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Neoclassical impurity transport:  Predicted to be 
outward in I-mode pedestal. 

• Recent theoretical analysis of typical C-Mod  
I-mode, based on experimental profiles, finds 
all terms in radial impurity flux are 
OUTWARD.   
S. Espinosa, MIT Ph.D. 2017, submitted. 

• First term is outward if ηe > 2  
ie  LT < 2 Ln, which is typical for I-modes due 
to steep ∇T/T, low ∇n/n.  (also most  
L-modes; H-mode have lower ηe~1 ). 

• Other terms, depending on poloidal 
asymmetries and flows, are also outward.     

32 

C-Mod 
Whyte 
NF 2010 
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Neoclassical impurity transport:  Predicted to be 
outward in I-mode pedestal. 

• Recent theoretical analysis of typical C-Mod  
I-mode, based on experimental profiles, finds 
all terms in radial impurity flux are 
OUTWARD.   
S. Espinosa, MIT Ph.D. 2017, submitted. 

• First term is outward if ηe > 2  
ie d lnT > 2 d lnn, which is typical for I-modes 
due to steep ∇T/T, low ∇n/n.  (also most L-
modes; H-mode have lower ηe). 

• Other terms, depending on poloidal 
asymmetries and flows, are also outward.     
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maybe add eta_e figure, from 
Silvia’s defense. 

• Total transport is sum of turbulent, neoclassical fluxes. 
• Quantitative analysis of impurity, main species, and thermal neoclassical 

transport, and comparison to estimated turbulent fluxes, are needed. 
• Outward neoclassical transport would certainly help avoid accumulation in  

I-mode. 
• Would not explain sudden increase in density, impurities at I-H transitions, 

when turbulence is suppressed. 
• Why is particle transport the same in L and I-mode?     
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I-mode phenomenology and physics 
• What is “I-mode”? Why of interest for fusion? How to 

access?  
 

• Evidence for separation of thermal and particle transport 
 

• Phenomenology:  Measurements of profiles, turbulence 
and flows on C-Mod and ASDEX Upgrade tokamaks 
 

• Physics:   Possible contributions to separation of transport 
channels   
(for workshop discussion, still no definitive explanation) 

 
• Conclusions, questions, prospects 
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Summary: I-mode phenomenology and physics 

• I-mode is a distinct confinement regime in which energy confinement is 
improved, but all measures of particle confinement remain at L-mode 
levels. Also ELM-free.  This has many attractions as a fusion regime. 

• Observed on multiple tokamaks, now over wide ranges of parameters. 
• Detailed measurements of pedestal profiles, turbulence, flows on C-

Mod and AUG reveal complex physics (GAM, Weakly coherent mode, 
intermittent bursts are all linked). 

• Poses a very interesting challenge to our understanding of transport and 
transport barriers.   Linked to longstanding differences in L-H threshold with 
magnetic configuration.    

• Several physics ideas are emerging which might explain separation of particle and 
energy transport, but more work is needed to develop and test them. 
– New ideas from the stellarator community are welcomed!   
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Future prospects  

• Prospects for extrapolation of I-mode to tokamak burning plasmas 
(presented IAEA16, EPS17 but not much in this talk) are promising, especially 
for high BT devices.   An ELM risk mitigation strategy for ITER, DEMO. 
― More experiments are planned on AUG, EAST, KSTAR, WEST, ST’s.  
― Need larger scale experiments for confident extrapolation.   JT-60SA, with its 

flexible configuration, will be highly valuable.  

For discussion:  
• Has a similar regime, with high thermal confinement but low particle confinement, 

been observed in stellarators? 
• In tokamaks, up-down magnetic configuration (X-point wrt B×∇B drift) clearly 

plays a major role in obtaining I-mode.    
How would this condition relate to non-axisymmetric configurations?  

Thank you for this invitation.   
I look forward to discussing during the workshop!   
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