The Effects of Extrinsic Low-Z Impurity Seeding in ICRF-heated Alcator C-Mod Plasmas

M.L. Reinke, D. Brunner, B. LaBombard, B. Lipschultz, J.W. Hughes, J. Terry, S.M. Wolfe, S.J. Wukitch and the Alcator C-Mod Team

MIT – Plasma Science and Fusion Center, Cambridge, MA, USA

JET - E1/E2 Task Force Meeting September 20th, 2012

Is Low-Z Seeding Research Sufficient?

- cross-machine scaling [Eich PSI 2012] predict the power exhaust channel will be narrow, ~1 mm, even in ITER
 - requires a partial-detached, impurity seeded divertor solution
 - ITER may operate initially with full tungsten divertor
- AUG, JET and C-Mod experiments show high-Z divertor tokamaks respond well to low-Z seeding, maintaining H₉₈ ~ 1 w/ low P_{O,DIV}
- these devices also show significant high-Z contamination in plasmas with substantial ICRF heating

Do current NBI+ECRH scenarios provide sufficient confidence that low-Z seeding will work in ITER/DEMO which expect to rely on the use of ICRH?

Alcator C-Mod features all metal (Mo) PFCs and investigates high-confinement regimes with ICRF-heating

High-Z Contamination Has a Variety of Causes

Intrinsic impurities result from one of the following interactions

SPUTTERING & TURBLENT TRANSPORT

"The cost of doing business"

- Ohmic plasmas
- standard sheathinduced sputtering
- turblent/blobby edge plasma to transport impurities past LCFS

RF-ENHANCED SOURCES AND TRANSPORT

"The cost of making it work"

- ICRF, ECH, LHRF heated plasmas
- rf-rectified sheaths,
- ExB convective cells
- fast-ion & electron losses

MELTING/INJECTIONS DUE TO PFC DAMAGE

"The cost of doing it poorly"

- injections from dust/PFC flaking
- injections from melted leading edges
- evaporation from hot/melting surfaces

Which of these can low-Z seeding mitigate?

Do we win replacing a high-Z impurity with low-Z?

High-Z Contamination Has a Variety of Causes

Intrinsic impurities result from one of the following interactions

SPUTTERING & TURBLENT TRANSPORT

"The cost of doing business"

- Ohmic plasmas
- standard sheathinduced sputtering
- turblent/blobby edge plasma to transport impurities past LCFS

M.L Reinke

RF-ENHANCED SOURCES AND TRANSPORT

"The cost of making it work"

- ICRF, ECH, LHRF heated plasmas
- rf-rectified sheaths,
- ExB convective cells
- fast-ion & electron losses

MELTING/INJECTIONS DUE TO PFC DAMAGE

"The cost of doing it poorly"

- injections from dust/PFC flaking
- injections from melted leading edges
- evaporation from hot/melting surfaces

Are JET, AUG and C-Mod seeing the same phenomenology? Is there one explanation or multiple PFC/impurity problems?

Outline

- overview of Alcator C-Mod tokamak and tools for seeding
 - intrinsic/extrinsic impurities and seeding techniques
 - diagnostics used to monitor core impurities and PFC sources
- low-Z seeding is not a panacea for all impurity problems
 - cannot replace the positive effects of boronization
 - cannot impact impurity sources driven by fast-e⁻ & fast-ion loss
- low-Z seeding is compatible with high confinement regimes
 - increase the reliability of the ICRF heating
 - lead to a decrease in P_{RAD,CORE} by reducing molybdenum
 - drop $P_{O,DIV}/P_{IN}$ to < 10% while maintaining $H_{98} \sim 1$ in EDA H-mode
 - impact of neutral and low-Z seeding on pedestal physics

The Alcator C-Mod Tokamak

A high field, B_t < 8 T, compact, R_o =0.68 [m] a=0.205 [m] tokamak with all solid metal (Mo) plasma facing components

http://en.wikipedia.org/wiki/File:Alcator_C-Mod_Tokamak_Interior.jpg

 $n_{e,0} < 1.0 \times 10^{21} \text{ m}^{-3}$ $T_{e,0} < 9 \text{ keV}$

Primary Auxiliary
Heating is ICRF
< 6 MW (8 MW source)

single chord (radial)

VUV/SXR spectroscopy

for B→Ne and Ti → Cu

spatially-resolved SXR

spectroscopy for Ar, Mo

multiple vis. periscopes

to view of PFC sources

A Wide Range of Impurities Seen in C-Mod

KEY: <u>steady-state</u> injections **primary extrinsic**

Helium gas puff imaging of edge turbulence, D(³He) heating

Boron boron-coated tiles, periodic boronization

<u>Carbon</u> seen after vessel entry, prior to first boronization

Oxygen unknown but seems to tied to limiter

Nitrogen seeding for heat flux mitigation and ICRF performance

<u>Fluorine</u> assumed to come from teflon coated/jacketed cables

Neon seeding for heat flux mitigation and ICRF performance

Argon for use with X-ray imaging crystal spectroscopy (T_i, rotation)

Calcium injected using laser blow-off for impurity transport studies

Titanium TiC-coated rods in Faraday screen

<u>Iron</u> stainless-steel* in-vessel structures

Nickel Inconel antenna structures

Copper copper-coated ICRF antenna straps

Molybdenum limiters and divertors

Tungsten Langmuir probes and remnants from melted outer divertor

(*occasionally see other traces from metal processing like S, Cl, Mn, Cr)

Extrinsic Seeding From Multiple Locations

Neutral INJection Apparatus

Many toroidal/poloidal locations, but slow response

Main Chamber

Puffed into horizontal port, wide "footprint" at plasma

Divertor Chamber

Puffed into vertical port, slow response to divertor

Localized Divertor

High throughput, direct injection into the divertor

- used for many experiments featuring high power ICRF (H-mode & I-mode)
- neon seeding is preferred over nitrogen
 - N V emission with B V line used for CXRS
 - shot-to-shot build-up of nitrogen contaminates subsequent experiments

C-Mod Regularly Operates With Melted PFCs

- over the campaign we melt the outer midplane limiter and leading edges in the divertor
- tiles are repaired/replaced before each campaign
- divertor melting demonstrated to impact core via injections
 - FY09/10 tungsten melting localized to divertor still impacted core
 - C-Mod is working on a new toroidally continuous divertor
- toroidally/polodially localized source hard to monitor/correlate

What fraction of core molybdenum originates from these melted PFCs?

Problems Even Low-Z Seeding Can't Solve

Seeding Cannot Replace Boronization

- historically degradation of the BZN is correlated with the integrated
 ICRF input energy
 [S. Wukitch APS/IAEA 2010]
- indications that low-Z seeding could extend/avoid BZNs
 - seeded: sustained $H_{98} = 1.0 @ 75 MJ$
 - unseeded: isolated $0.8 < H_{98} < 0.9$
- over a two-day experiment using Ne and N₂ seeding a fiducial shot was repeated (5.4 T, 0.9 MA)

ICRF INPUT [MJ]: 26 68 71 112

could recover H₉₈ ~ 1 by lowering the I_p to 0.7 MA

Limiter Melting Due Runaway e- at Startup

- in FY09, instituted a runaway shutdown in plasma control system based on hard X-ray signal
- not 100% effective and recently have direct obs. of melt event

Possible Limiter Melting Due to Fast-Ion Losses

- observe large energy flux to the midplane of the outboard limiter during some ICRFheated plasmas
- correlated with drives for fast-ion loss
 - increases with P_{RF}/n_e, exhibits a threshold
 - increases as plasma current is lowered
 - increases as D(H) resonance layer moves to LFS but not when moved to HFS
- energy flux near level of melting of flat surface (40-50 MJ/m² over 1 second)

Possible Two-Step Process Leading to Damage

- 1) initial surface deformation due to fast e
- 2) fast ion energy flux grows the melt layer

Low-Z Seeding Cannot Mitigate the Limiter Source

- for N₂ seeded, low current (700 kA), observe strong limiter energy flux
- in repeated plasmas, increase in P_{RAD} due to molybdenum as tile approaches melting limit

Outboard Main Plasma Limiter

Operational Advantages to Low-Z Seeding

Low-Z Seeding Enhances ICRF Reliability

initial 2009 impurity seeding experiments suggested favorable impact of low-Z seeding on ICRF performance

terminating N₂ seeding during the ICRF pulse leads to "trips" and reduced input power

Low-Z Seeding Enhances ICRF Reliability

- initial 2009 impurity seeding experiments suggested favorable impact of low-Z seeding on ICRF performance
 effects saturate after a small amount of low-Z impurities injected via main-chamber
- observe an increase of ~10% in the net energy delivered versus requested energy
- reduce "trips" which can lead to confinement transitions

effects are easily reproducible and low-Z seeding now regularly used to aid ICRF performance

Low-Z Seeding Reduces Core Molybdenum

Seeding also reduces injections from divertor

- known/observed leading edges of molybdenum tiles
- tungsten Langmuir probes at <u>attached</u> inner strike point in rev.-field operation

Clues to a Major Source of Molybdenum?

melting/evap. responds directly to P_{IN}-P_{RAD} standard sheath-induced sputtering responds to seeding

- impurity radiation lowers T_e , but dilution increases $\langle Z \rangle$ of ions
- sputtering yield drops quickly with T_e, turn down/off sputtering

how do rf-induced sheaths & convective cells respond to low-Z impurities?

Confinement Studies in Impurity Seeded EDA H-mode Plasmas

Wide Parameter Space Covered at Fixed Ip, Bt

Investigate
confinement
versus P_{LOSS} and
P_{NET}=P_{LOSS}-P_{RAD}

Work described in more detail in:

Reinke – J. Nucl. Materials 2011

Hughes – Nucl. Fusion 2011

Loarte - Phys. Plasmas 2011

 $P_{LOSS} = P_{OHM} + f_{RF}P_{ICRF} - dW_{th}/dt$

 $P_{NET} = P_{OHM} + f_{RF}P_{ICRF} - P_{RAD,CORE} - dW_{th}/dt$

 $P_{RAD,CORE}$ = the radiated power estimated to be inside the LCFS

Example Time Traces of Seeded Discharges

Scanned ICRF input power in EDA H-mode plasmas seeded with ARGON NEON NITROGEN

- impurity fueling initiated before the application of ICRF and the L/H transition
- using all three impurities, H₉₈ ~ 1
 plasmas were obtained
- lowest heat flux measured for nitrogen seeding
- H₉₈ very sensitive to higer-Z (Ar) impurity levels, quickly leading to reduced confinement

Results Show H₉₈ Correlated with P_{NET}

- Regardless of seeded impurity, confinement organized to
 P_{NET} = P_{IN} P_{RAD,CORE} dW/dt
- $H_{98} \sim 1$ occurs at $P_{NET}/P_{TH} \sim 1$ [$P_{TH} Y$. Martin scaling]
- This differs with JET results [Giroud 2012] in ELMy H-mode showing H₉₈ correlated with ELM regime (Type I > Type III)

Higher I_p Requires Inc. P_{NET}/P_{TH} to get H₉₈ ~ 1

Z_{eff} is High, but so is Fusion Reactivity?

- two estimates of Z_{eff} averaged over the plasma agree
- Ne and N_2 seeded plasmas with low $P_{O,DIV}$ have $Z_{eff} > 3$

At same T_{e,95}, low-Z seeded plasmas have higher neutron rate

Effect could be the result of

- 1) change in T_i vs. T_e profile
- 2) hollow imp. density profiles

Enhanced Confinement Due to Pedestal Changes

H₉₈ scales with pedestal temperature, T_{e,95}

- no significant change in L_{ne}, Lte observed in seeded plasmas
- consistent with profiles stiffness

Small difference in H_{98} at fixed $T_{e,95}$ for different impurities

- low-Z seeded shots higher H₉₈ compared to unseeded plasmas
- low-Z shots have slightly higher pedestal density

Nitrogen Seeding Effects Quasi-Coherent Mode

1.5

Nitrogen Seeding Effects Quasi-Coherent Mode

- in the EDA H-mode, the pedestal is relaxed continuously via the Quasi-Coherent Mode (QCM)
- in similar, repeated plasmas see large qualitative change in QCM
- for H₉₈ ~ 1 and heavy seeding, the QCM weakens, upshifts and lower frequency fluctuations appear

Increased Neutral/Edge Density Drops H₉₈

Increased Neutral/Edge Density Drops H₉₈

- C-Mod has not completed "matrix-scans" of $\Gamma_{\rm Z}$ and $\Gamma_{\rm i}$ like JET
- prior work [Hughes Nucl. Fusion 2007] shows active neutral puffing at EDA H-mode reduces T_{e.95}
- observe natural background changes in neutral density due to PFC outgassing following BZN
- shots with similar pedestal densities but enhanced seperatrix densities have reduce $T_{\rm e.95}$ and $H_{\rm 98}$

What is the mechanism at work?

- 1) Energy loss from charge-exchange
- 2) Stiff particle transport removing heat

Edge Plasma Modified with LHRF Increases H₉₈

- previous research [Hughes NF 2010] in 0.6 MA EDA H-modes demonstrated effect of a few 100 kW of LHRF
 - drop in core elec. density
 - increase in core elec. temperature
 - increase in pedestal T_e at fixed p_e
 - outward radial shift in neutral emission
- recently demonstrated this in 0.8 MA seeded EDA H-modes
 - increase in H_{98} from $0.7\rightarrow0.9$
 - no significant change in the core level of seeded impurity
 - strong change in edge turbulence observed, blobs "quieted"

Divertor Heat Flux Reduced at High H₉₈

- outer divertor heat flux profile measured using IR imaging and surface/tile thermocouples [Terry – PSI 2010]
- can reach ITER-relevant levels of P_{O-DIV}/(P_{IN}-dW/dt) < 10%
- only when using Ne or N₂ can H₉₈ ~ 1 be maintained

X-Point Radiation Comp. With High Confinement

measure the X-point profile of Li-like nitrogen (N V @ 123.9 nm)

radiation inside LCFS but outside of pedestal

X-Point Radiation Candidate for Feedback Control

filtered photodiode array views x-point VUV emission with good space and time resolution – possible use for N₂ control

X-Point Radiation Candidate for Feedback Control

filtered photodiode array views x-point VUV emission with good space and time resolution – possible use for N₂ control

Summary

- Alcator C-Mod has demonstrated operations with low-Z seeding
 - low-Z seeding shown to improve ICRF performance
 - low-Z seeding shown to reduce core molybdenum content
- use of low-Z impurities cannot replace boronization or eliminate intrinsic impurity sources driven by fast particle losses
- C-Mod EDA H-mode studies demonstrate confinement, H_{98} , responds to $P_{NET} = P_{IN}$ -dW/dt- $P_{RAD,CORE}$
 - response consistent with core profile stiffness accompanying change in pedestal temperature and density
- we are working to extend our contributions
 - relative role of high-Z source due to rf effects, sputtering and melting
 - improved physics understanding of seeding impact on pedestal
 - exploring ways to deploy feedback control of low-Z seeding

EXTRA SLIDES

N₂ Seeding Found to Be Toroidally Asymmetric

- toroidal non-uniformity of nitrogren puffing investigated at ITER's request to inform the # and spacing of divertor gas puffs (R. Pitts)
- observe divertor P_{RAD} at fixed toroidal location & puff at others

Confinement Scaling for P_{RAD} and P_{IN}

Work described in more detail in:

Reinke – J. Nucl. Materials 2011 Hughes – Nucl. Fusion 2011 Loarte – Phys. Plasmas 2011

Impurities Observed Over Wide Spectral Range

XEUS+LoWEUS spectra

Soft X-ray (SXR) and vacuum ultraviolet (VUV) spectroscopy:

- X-ray imaging crystal spectroscopy for radial profiles of Ar, Ca and Mo (DI < 0.1 Ang within 3 < I < 4 angstroms, with up to 5 ms time resolution [PPPL collaboration]
- two single cord, core-viewing flat-field spectrometers with 2 ms time resolution [LLNL collaboration]
 - 10 < I < 60 Ang for viewing H-like and He-like emission in 5 < Z < 10 (B to Ne)
 - 100 < I < 300 Ang for viewing Na/Mg-like Mo and Li/Be-like metal