Centrifugal and Fast-Ion Effects on Poloidal Impurity Density Asymmetries in Tokamaks

M.L. Reinke

MIT – Plasma Science and Fusion Center, Cambridge, MA, USA

Y. Camenen

CNRS / Aix-Marseille University, Marseille, France

JET - E1/E2 Task Force Meeting September 20th, 2012

"He's mad that trusts in the tameness of a wolf(ram)"

The JET ITER-like Wall Project is a Important Step Towards a Reactor

- bold programmatic decision making
- well planned and executed engineering and physics tasks

Operational Changes with High-Z PFCs

- tokamak response to startup/fueling
- high-Z response to ICRF heating
- looming worry of permanent damage

characterizing high-Z impurities requires different techniques and involves physics that drive poloidal imp. density variation

Overview

- Neoclassical Parallel Impurity Transport Physics*
 - qualitative & quantitative explanation of asymmetry drives
 - examples of strong in/out high-Z impurity asymmetries
- Alcator C-Mod Diagnostic and Analysis Techniques
 - 2-D Tomography using horizontally viewing arrays
 - measurements of low-order poloidal variation of n_z
 - comparisons to predictions of low-order poloidal variation
- Possible Impacts on Flux-Surface Averaged Radial Transport
- Suggested Diagnostic Upgrades/Modifications for JET

<u>Upfront Apology</u> – will show you your own data...patronizing?

^{*}see M.L. Reinke Ph.D thesis for a review of exp. & theory of density asymmetries in tokamaks

The Centrifugal Force – LFS Accumulation

- for a tor. rotating plasma, centrifugal force pushes ions to the low-field side (LFS) of a flux-surface
- in $v_i/v_{th,l} = M_i \sim 1$ plasmas, impacts main ions (MAST, NSTX)
- effect scales as $m_z \omega^2 R^2 / T_z$ but since $T_z \sim T_i$, scales with $M_i^2(m_z/m_i)$
- heavy impurities can vary on a flux surface, $\tilde{n}_z(\theta)/\langle n_z \rangle \sim 0.3$, even in when the main ions are nominally flux surface symmetric, $\tilde{n}_i(\theta)/\langle n_i \rangle << 1$

LFS Accumulation in AUG Soft X-rays

- Importance of inertia in parallel transport known since the 70's [Hazeltine and Ware 1976] and discussed w/r/t impurities repeatedly [Burrell 1981, Wong 1987, Wesson 1997, Helander 1998]
- Effect first observed on ASDEX [Smeulders 1986], viewing brem. and Fe emission in a NBI-heated ELM-free H-mode plasmas (M_i ~ 0.5)
- Seen on ASDEX-U in mid/high-Z impurity seeded plasmas (below)
 with strong neutral beam heating [Dux 1999]

LFS Accumulation in JET Soft X-rays

- JET has observed and studied LFS accumulation of impurities [Gianella 1992, Alper 1996, Ingesson 98, 2000, Chen 2000]
- used 6-camera, 210 ch. SXR tomography diagnostic
- V_z/v_{th,z} ~ 4 in hot-ion H-mode led to strong in/out asym. of Ni emission from LBO
- completed the first comparison to theory

FIG. 4. Ni density derived from the soft x-ray emissivity at t=6.72 s (cross) and calculated Ni density at the same time (line).

But did this include all the necessary physics?

H. Chen, et al. Phys. Plasmas **7** 4567 (2000)

Fast-Particle Driven Poloidal Elec. Fields

 the high charge of imp. leads to sensitivity to poloidal variation of electrostatic potential

$$n_z/\langle n_z \rangle = \exp[-Ze\Phi(\theta)/T_z]$$

- first exp. observation in ICRF-heated Ni LBO shots on JET [Ingesson – 2000]
- should also be an effect from neutral beam ions and ECRH electrons

HFS Accumulation in C-Mod Radiation

HFS Accumulation in JET Soft X-rays

- evidence of neutral beam fast-ion effect exists
 - AUG: wrong m_z scaling
 - JET: Z_{eff}, ICRF ignored
- early JET asymmetry experiments showed difference between co/counter beam heating
 - reduced LFS accumulation for co-injected
 - observation of HFS accumulation in weakly rotating co-injected

R. Gianella 19th EPS Conf. Proceedings (1992)

in/out modulation soft of the Relative Fig. 4 perturbation after metal emissivity X-ray Ni. heated plasmas. injection beam The © Fe, co-inj. co-inj.; ctr.-inj.; prediction . of the represent lines straight eq.(1) for different values of Zeff in D plasma.

State of ||-Impurity Transport Validation

$$\frac{m_z n_z \omega^2}{2} \nabla_{\parallel} R^2 + Z n_z e \nabla_{\parallel} \Phi + T_z \nabla_{\parallel} n_z = R_{z,\parallel}$$
 inertia (centrifugal) electrostatic pressure friction

inertia: widely observed, understood for strong

flows, possible issues $(\mathbf{v} \cdot \nabla)\mathbf{v}$ for $v_{\theta}/v_{\phi} \sim 1$

electrostatic: non-thermal particle densities lead to

 $\Phi(\theta)$ with $Ze\Phi(\theta)/T_e \sim 1$, demonstrated

for ICRH, need to validate for ECH and NBI

pressure: assumed to be all in n_z with $T_z(\theta)$

friction: disagreements seen, critical for setting

 $v_{\theta,z}$ and interpreting $v_{\theta,i}$ from CXRS/XICS

other: sources/sinks, C-X at large minor radii

Analytical Theory for ICRH + Inertia

$$\frac{m_z n_z \omega^2}{2} \nabla_{\parallel} R^2 + Z n_z e \nabla_{\parallel} \Phi + T_z \nabla_{\parallel} n_z = R_{z,\parallel}$$

$$n_a = \langle n_a \rangle \exp \left[-\frac{Z_a e \tilde{\Phi}}{T_a} + \frac{m_a \omega^2}{2T_a} \left(R^2 - \langle R^2 \rangle \right) \right]$$
 use quasi-neutrality to find the $\Phi(\theta)$

$$n_e = \langle n_e \rangle \exp\left(e\tilde{\Phi}/T_e\right)$$

$$n_e = \langle n_e \rangle \exp\left(e\tilde{\Phi}/T_e\right)$$
 $Z_m n_m + \sum_{j \neq m} Z_j n_j - n_e = 0$

for details see: Reinke PPCF **54** 045004 (2012)

Model the fast-ion using a bi-Maxwellian dist. w/ $\eta = (T_{\perp}/T_{||} - 1)$

$$\frac{n_m}{\langle n_m \rangle} = \left\langle \frac{1}{B^\eta} \right\rangle^{-1} \frac{1}{B^\eta} \exp\left(-\frac{Z_m \tilde{\Phi}}{T_{m,\parallel}}\right) \qquad \text{Kazakov PPCF 54 105010 (2012) has shown a more detailed computation}$$

$$\frac{e\tilde{\Phi}}{T_e} = \left(\langle n_e \rangle + \sum_{j \neq m} Z_j^2 \langle n_j \rangle \frac{T_e}{T_j} \right)^{-1} \left[Z_m \langle n_m \rangle \left(\left\langle \frac{1}{B^{\eta}} \right\rangle^{-1} \frac{1}{B^{\eta}} - 1 \right) + \sum_{j \neq m} Z_j \langle n_j \rangle \frac{m_j \omega^2}{2T_j} \left(R^2 - \langle R^2 \rangle \right) \right]$$

$\Phi(\theta)$ From Neutral Beams Needs Investigation

- poloidal electric fields from neutral beam ions have not been thoroughly investigated
- complicated by geometry, beam energy/penatration
 - perp. Injection puts fast-ions on trapped orbits look like ICRH?
 - no "resonance layer" which localizes the effect
- can this be parameterized as a temperature anisotropy?
 - toroidal NBI leads to $T_{\perp}/T_{||} < 1$
 - additional LFS accumulation on top of centrifugal force
- can be computed using Monte-Carlo beam modeling codes
- is there a way to get this empirically using FIDA diagnostics?
 none of this can be done at C-Mod, requires others to be interested in asym. physics & devote exp. time

Ion-Impurity Friction Links $n_z(\theta)$ and $v_z(\theta)$

$$(1 + \alpha_z n) \frac{\partial n}{\partial \vartheta} = g \left[n + \gamma \left(n - \frac{K_z}{\langle n_z \rangle u_i} \right) b^2 \right] + \frac{\partial M^2}{\partial \vartheta} n$$

friction + inertia in banana regime: T. Fülöp, et al. Phys. Plasmas. 6 3066 (1999)

- 1D equation for $n=n_z(\theta)/\langle n_z \rangle$ using B.C. $n(0)=n(2\pi)$ defines K_z
- poloidal rotation, $\mathbf{v}_{\theta}(R,Z)=[K_z(\psi)/n_z(\psi,\theta)]\mathbf{B}$, sensitive to n_z

Comparing with NCLASS assumes n_z doesn't vary on a flux surface NEO has inertia, need to validate friction and include $\Phi(\theta)$ effects no evidence of a sig. drive for core high-Z asymmetries

friction thought to be driving HFS acc. of low-Z impurities in the pedestal – important for rad. layer in seeding studies?

[C-MOD: Pedersen – 2002, Marr - 2010, Churchill – 2012 AUG: Putterich – 2012]

Alcator C-Mod Approach to the Measurement and Study of Poloidal Variation in High-Z Impurities

2D Radiation Measurements in C-Mod

- investigated the 2-D radiation in C-Mod plasmas with significant molybdenum contamination
- use multiple, horizontally viewing pinhole cameras at different heights
 - measure B(R,Z_o), invert each to get ε(R,Z_o) [in/out asymmetry]
 - combine all cameras to find low-order poloidal variation [in/out & up/down]
- standard poloidal tomography difficult
 - divertor radiation
 - inner-wall MARFE
 - poor HFS/vertical diagnostics access

Symmetric Emission in Ohmic Plasmas

LFS Accumulation in EDA H-mode

HFS Accumulation in ICRH L-mode

Computing the In/Out and Up/Down Asym.

- demonstrate that the $n_{z,cos}$ and $n_{z,sin}$ terms can be found independent of $\langle n_z(r) \rangle$
- peaked and hollow profiles (left) have the same asym.
 - $n_{z,sin}(r)/\langle n_z(r)\rangle$
 - $n_{z,cos}(r)/\langle n_z(r)\rangle$
- compute synth.
 brightness profiles,
 Abel invert and fine the m=1 terms

Asym. Profiles Indep. of Radial Profile

Comparing Measurements to Theory

- need to compute expected n_z(θ) profile to compare to or supplement measurements
- solve the 1D diff. eq. for $n_z(\theta)/n_z(0)$

Num. Code Critical for Multiple Forces

Validation of HFS Accumulation due to ICRH

$$\frac{n_z}{\langle n_z \rangle} = 1 + \frac{m_z \omega^2}{2T_i} \left(1 - \frac{Zm_i}{m_z} \frac{Z_{eff} T_e}{T_i + Z_{eff} T_e} \right) \left(R^2 - \langle R^2 \rangle \right) - Z f_m \frac{T_e}{T_i + Z_{eff} T_e} \left(\left\langle \frac{1}{B^{\eta}} \right\rangle^{-1} \frac{1}{B^{\eta}} - 1 \right)$$

$$\frac{n_{z,cos}}{\langle n_z \rangle} = 2 \frac{r}{R_o} \left[\frac{m_z \omega^2 R_o^2}{2T_i} \left(1 - \frac{Zm_i}{m_z} \frac{Z_{eff} T_e}{Z_{eff} T_e + T_i} \right) - Z f_m \frac{T_e}{Z_{eff} T_e + T_i} \left(\frac{T_\perp}{T_\parallel} - 1 \right) \right]$$

$$\left[-Z f_m rac{T_e}{Z_{eff} T_e + T_i} \left(rac{T_\perp}{T_\parallel} - 1
ight)
ight]$$

LFS accumulation due to centrifugal force

HFS accumulation due to minority anisotropy

Validation of HFS Accumulation due to ICRH

$$\frac{n_z}{\langle n_z \rangle} = 1 + \frac{m_z \omega^2}{2T_i} \left(1 - \frac{Zm_i}{m_z} \frac{Z_{eff} T_e}{T_i + Z_{eff} T_e} \right) \left(R^2 - \langle R^2 \rangle \right) - Z f_m \frac{T_e}{T_i + Z_{eff} T_e} \left(\left\langle \frac{1}{B^{\eta}} \right\rangle^{-1} \frac{1}{B^{\eta}} - 1 \right)$$

no peaking in $n_2(\theta)$ profile around the resonance layer

Implications for "Radial" Impurity Transport Studies: Is 1D Enough?

Impact on "Radial" Impurity Transport

$$n_z(\theta) \rightleftharpoons \langle n_z \rangle$$
 ??

in most cases parallel and radial transport can be separated

- neoclassically $\tau_{\perp} >> \tau_{||}$ easily satisfied
- . turbulent radial transport can lead to cases $\tau_{\perp} > \tau_{||}$ or $\tau_{\perp} \sim \tau_{||}$
 - note that $\tau_{||} \neq L_{||}/v_{th,z}$, high-Z leads to diffusive or $\tau_{||} = L_{\theta}/v_{\theta,z}$

at a minimum, STRAHL/SANCO simulations should use $\langle n_z \rangle$

 if asymmetries present, diagnostic views must be tailored to either average-out in/out asymmetries or measure them directly

what role, if any, does $n_z(\theta)$ have on turbulent $\langle \Gamma_z \cdot \nabla \psi \rangle$?

- rapidly evolving theoretical work 2009+
- first dedicated experiment run at C-Mod on Sept. 13th, 2012

Centrifugal Effects in QL Radial Imp. Flux

Warwick and IPP-Garching groups have worked on including centrifugal force effects on radial transport using a fluid model and Vlasov flux-tube code GKW

 using a fluid model, the quasi-linear impurity flux is identified to have 4 components and enhanced by centrifugal force (CF)

$$R\Gamma_S = n_S D_S \left[R/L_{n_S} + \left(C_T + C_T^{\ CF} \right) R/L_{T_S} + \left(C_u + C_u^{\ CF} \right) u'_S + C_p + C_p^{\ CF} \right]$$
 DIFFUSION THERMAL-DIFF ROTO-DIFF PINCH

- high M_i(m_z/m_i) "imp. Mach #" modifies the turbulent transport
 - additional particle drifts
 - free energy in the rotation
 - increased particle trapping at LFS (vs. ballooning turbulence)
- For more information see:
 - A. Peeters, PoP **16** 012503 (2009)
 - F.J. Casson, PoP 17 102305 (2010)
- Y. Camenen, PoP 16 0125003 (2009)
- C. Angioni, IAEA 2012

Centrifugal Effects Important in QL Flux

- "ON" includes CF effects with impact terms at high mass Z=A/2
- for weak (M_i < 0.3) main-ion flows, analytical (EQ) matches GWK
- degree of ionization matters as well (for PI Z=46 for A > 92)

used with permission from C. Angioni IAEA - 2012

Effect Using Generic Poloidal Variation

Chalmers group is studying the effect of a generic $n_z(\theta)$, not limited to centrifugal work is just beginning^a to look at effect

on radial transport driven by ITG turb.

decompose measured $n(\theta)/n(0)$ in form:

$$\frac{n_z}{n_{z0}} = \sum_{n} \left[f_n \cos \left(\frac{\theta - \delta}{2} \right) \right]^{2n}$$

different (θ, n) have different zero-flux gradient scale lengths, find weighted ave.

$$\frac{a}{L_z} \simeq \frac{\sum_n f_n \frac{a}{L_{z,n}}}{\sum_n f_n}$$

^aS. Moradi, *et al.* PPCF **53** 115008 (2011)

ExB Drift From Pol. Elec. Field Important

Recent work by Mollen^a has shown impact of including the drift from $E_{\theta} \times B_{\phi}$ which also has an explicit mag. shear dependence

Current JET Bolometer Diagnostic

- KB5H should do OK for total radiated power
- asymmetric part will be hard to get with KB5V
 - core views see divertor region and B_{CORE} ~ B_{DIV}
 - all views terminate at different poloidal points

is a horizontal midplane viewing array possible?

- toroidally symmetry robust on non-MHD timescales
- easy to invert, feedback control of asymmetry?

Full Operation of SXR Tomography

- previous JET asymmetry research was done with a comprehensive diagnostic set
- nearly 200 channels with a wide range of poloidal viewing angles
- <u>extensive</u> verification efforts completed by C. Ingesson

What fraction is functional?

Are filters optimized to view W emission?

Consider Installation of XICS

X-ray imaging crystal spectroscopy (XICS) well suited to asym. studies

- measure high-Z impurities radiation profiles
- measure radial profiles of flows and temperatures

JET can answer important ITER-relavent XICS questions

- can we measure profiles using tungsten emission w/o it killing the plasmas?
- can we use a limited poloidal view if we expect asymmetries?

XICS requires detectors close to the plasmas - will it survive D/T ¹P. Beiersdorfer, *et al.* J. Phys. B. **43** 144008 (2010) ²P. Beiersdorfer, *et al.* LLNL-SR-464953 (2011)

Summary

- Poloidal variation of high-Z impurities is a dramatic and important effect in rotating, auxiliary-heated tokamak plasmas
 - the centrifugal force leads to strong LFS accumulation
 - poloidal electric fields can be driven non-thermal particles
- Alcator C-Mod has a mature program for asymmetry studies
 - measurements using horizontally viewing arrays
 - agree with theory based on combined ICRH and inertial effects
- Impact of Asymmetries on Flux-Surface Averaged Radial Transport is an Area of Expanding Research
 - theory identifies importance but experiments are just beginning
- JET is well suited to contribute to effort on both topics but should critically evaluate diagnostic set for easy upgrades

Extra Slides

Can Account for Plasma Shaping Effects

