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Fusion Energy Progress has been Truly Remarkable

• From 1970 to 1995, 
nT, fusion power and 
fusion energy increased 
much faster than 
computing power 
(Moore’s law)
— more than 12 

orders of 
magnitude increase 
in fusion energy 
per pulse
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Fusion Energy Development has Slowed

• From 1970 to 1995, 
nT, power and energy 
increased much faster 
than computing power 
(Moore’s law)

• Why the slowdown?
— research funding 

decreases
— unit size of 

devices being 
designed and built 
is very large

ITER 
Q=10 
>2030?
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High-Field Tokamaks Long Recognized as an 
Expedient Approach to Study Burning Plasmas

• Compact copper-magnet 
designs, including Ignitor, 
Zephyr, CIT/BPX, FIRE
— Demonstrate and study 

alpha-dominant heating 
regimes, in pulsed 
operation

— Since the required 
magnetic fields were not 
achievable with 
conventional 
superconductors, 
deemed by some to be a 
“dead end”

FIREBPX

Ignitor
Zephyr
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REBCO 
(Rare-Earth 

Barium Cu-Oxide) 
remains 

superconducting 
at VERY 

high B-field, and 
above liquid He 
temperatures 

A Revolution in High Temperature 
Superconductors (HTS) in Last 5 Years
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Industrial Maturity of High-B Superconductors 
Motivates Reconsideration

• Devices that produce net 
electricity could be built at smaller 
scale  sooner, lower cost

• Operating point would be more 
favorable for
— Stability, control, 

sustainment, PMI, disruption-
immunity

• Higher temperature operation 
opens new options for jointed coils
— flexibility, maintainability

Possible game-changer for fusion energy

Prototype HTS Joint
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Recent Magnet Technology Advances Could 
Lead to Faster Development of Fusion Energy

Outline
— Superconducting Technology
— Confinement and Stability: Core and Pedestal
— Power Handling and Plasma-Wall Interactions
— Next steps
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REBCO: coated superconductors in 
robust tape form, commercially available

• Strong in tension due to hastelloy steel 
• Flexible
• Outer Cu coating  simple solder low-

resistance joint
• Stark contrast with Nb3Sn 

superconductor strand & CIC!

REBCO tape composition
(not to scale) 10T prototype double pancake
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Other Applications of REBCO
High-Field, High Temperature Superconductor

• Electrical Transmission
• Electrical Energy Storage
• NMR/MRI
• Possible upgrades to LHC

Dipole  Field for Hadron Collider*

*L. Bottura, et al., IEEE Trans. Appl. Supercond. 22(2012)4002008.

Higher B:
spatial resolving power ~B3

SMES: Energy Density  B2
Small ST, 
Tokamak 

Energy, UK
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What limits B in an HTS Tokamak?

• Need sufficient volume for 
superconductor, with given jc
constraints
— thin tape geometry advantageous

• Stay within structural stress limits
— Understanding of mechanical 

stress and limits is a mature 
engineering discipline

— Note that C-Mod successfully 
operates (1000’s of cycles) at high 
fields (≤17 T at the coil), with 
demountable joints (copper)
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Smaller, modular fusion devices can accelerate 
fusion’s development

• Cost & time ∝ unit volume and mass
• ITER is an invaluable science experiment for burning plasmas, not an optimized 

size for modular fusion energy “pilots”
— ITER is a trial of one fusion concept, fission pilot tried four different cores!

• Small size and modularity are self-reinforcing: pilots of complex engineered 
systems should be no larger than necessary, yet sufficiently capable 
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Integrated steady-state parameters required for advanced tokamak 
reactors (@B≤6 T) not yet achieved

DIII-D ARIES-AT

B0 (T) 2 5.8

q95 6.3 3

H89 2.7 2.5

βN 3.7 5.4

G = βNH89/q2 0.25 1.5

fbootstrap 0.65 0.91

n / nGreenwald 0.5 0.9

Najmabadi et al. FED 80 (2006)
Chan et al. NF (2011) 

A.C.C. Sips, Plasma Phys.Control.Fusion, 47(2005)A19–A40
Zarnstorff Demo workshop 2012 
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Confinement physics strongly favors high B to 
produce fusion capable devices at smaller size

R (m) 2.14

V (m3) 30

Bo (T) 10

Qp >10

Steady-
state No

Tritium
breeding No

Qelectric 0

Copper coil
pulse ~ 40 s Can this be made 

steady-state with
High-B 

Superconductors?

Gain Power
density

V ,$ R3
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Known physics scaling + Superconductor Bpeak > 20 T 
High-gain burning plasma: Compact Size & Steady-State

Gain Power
density

FIRE* ARC

R (m) 2.14 3.2

Bo (T) 10 9.2

Qp >10 >10

Steady-
state No Yes

Tritium
breeding No Yes

Qelectric 0 ~ 4

FIRE* 
copper

V ,$ R3

**B.N. Sorbom, et al., Fus. Eng. Des., 100(2015)378*D. Meade,  Fus. Sci. Tech. 47(2005)393

“ARC”** 
REBCO superconductor
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High B permits a pedestal with required pressure for fusion 
performance, away from Peeling-Balooning stability limits

• Reactor/FNSF pedestal is 
constrained:
T~ 5 keV (D-T reactivity),  n20~ 1
 pped ~ 0.15 MPa (~x1.5 pped, 

ITER)
• But the P-B limit, defined in βN, 

cannot be violated due to PFC 
damage from ELMs. 

• This greatly favors high B2 to push 
the required pedestal away from 
the P-B limit, and to be consistent 
with non-disruptive high q*

ELITE8

βN=1
ITER

βN=1.15
FIRE

Snyder et al NF 2011
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High B permits a pedestal with required pressure for 
fusion performance, away from P-B stability limits

• Example: take pedestal width, r/a~5%, fix 
aspect ratio and shaping of ITER, FIRE, 
ARC

— this reduces to requirement for 
minimum B2/q

• Key transport physics requirement…some 
transport regulation mechanism to hold 
pressure below limit (QH-mode, I-mode, 
etc.)  

B2

q*

 10
pped ,MPa

0.15






ITER ARC

stable

B2
/q

*

B (T)
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ARC designed with scaled I-mode profiles from C-Mod to assess I-mode 
viability in non-inductive burning plasma regime.  

• Key transport physics requirement…some 
transport regulation mechanism to hold 
pressure below limit (QH-mode, I-mode, 
etc.)  

• I-mode* is a naturally ELM-suppressed 
regime

— H-mode confinement, strong 
temperature pedestal

— Lack of density barrier helps to move 
pedestal further from P-B limit

— L-mode impurity confinement: no 
accumulation

• ARC pedestal below simple N limit 
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High Field Favors I-mode over H-mode

• Need to stay out of H-mode at 
high power

— Run with away from x-
point (~doubles H-mode
threshold)

• How does high B (≥ 8 T)  play 
into the access for I-mode and 
avoidance of unwanted ELMy H-
mode?

— Increase B, to further 
increase H-mode threshold 
(P~B0.8)
 I-mode threshold shows no, 

or at most weak scaling 
with B (P~B0.2)
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Doesn’t Compact, High Field Make the Divertor 
Power Handling Problem Harder?

• Actually, the answer is no
• SOL power width, q, 

independent of machine size 
(q1/ Bθ)
— qθ ≡ PSOL/S θ; q|| ≡ qθB/Bθ
— Sθ = q x 2R  R/Bθ

 q||  PSOLB/R
For fixed PSOL/Splasma, q||  BR
 Lawson criterion: R ~ 1/B2.3

 q// ~ 1 / B1.3

Eich, et al., NF 53 (2013) 093031

Bθ-midplane (tesla)

 q
(m

m
)
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Surface Power Handling is a Significant 
Challenge in all Reactor Concepts

• Comparing ACT2 
(R=9.8 m, PSOL/S=.4 
MW/m2) and ARC 
(R=3.3m, PSOL/S=.7 
MW/m2)
— no significant 

difference in 
expected edge q||
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HTS could also be revolutionary for Stellarators

• High current density
— reduced coil pack size

• Strong, flexible
— simpler coil design
— does not require reacting 

after winding
• Slowly varying fields can 

simplify engineering 
requirements

Modular HTS Option for FFHR-d1* 

*A. Sagara, et al., Fusion Engineering and Design, 87(2012)594
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ARC* conceptual design example of “smaller, sooner” 
fusion device using new superconductors  

ARC*:   R ~ 3.2 m
JET:   R ~ 3 m 

~4 years construction

REBCO superconductor, B0 = 9.2 TCopper,  B0 = 3.5 T

Pfusion ~10 MW x B4 Pfusion ~ 500 MW

Ip=7.8MA

*B.N. Sorbom, et al., Fus. Eng. Des., 100(2015)378-405
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ARC conceptual design example of “smaller, sooner” 
modular fusion devices using new superconductors  

• Demountable magnetic field 
coils
 enabled by jointed 

conductor
• Employ liquid blanket
• Single-unit vertical lift

Small, modular design features 
generically attractive for any 

MFE choice: 
ST, stellarator, liquid wall, etc.

Peak stress ~ 0.67 Gpa
~65% of limit for 316SS LN
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Where are we now?

• Superconducting technology advance opens a new window 
for a faster path
— HTS coils are a reality; not yet at scale needed for fusion
— Jointed construction would yield significant improvements 

in flexibility, maintainability
 R&D required

• Physics basis already largely demonstrated 
— Need improved surface power handling
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What can/should we do moving forward?

Fusion is needed, and soon: As a community we need to be continually 
looking for technology and science innovations to accelerate fusion’s 
development.
• HTS High Field Magnet R&D for fusion:

— Full scale models; Joint development
• Aggressive research to solve the power handling and sustainment 

challenges:
— Existing, and new purpose-built facilities, to meet the challenges

• Combine in a net-electricity producing Pilot
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Extra Slides
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April 2015: New record of 26.4 Tesla
with REBCO-only, “no-insulation” coil 

S. Hahn, J.M. Kim, et al.
NHMFL, FSU,  SUNAM, MIT  

10
cm
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L- and H-mode Confinement Tied to Pedestal Pressure
I-mode at least as good as H-mode, if not better

• Nearly universal curve for L-mode 
and H-mode

• Need to reduce or eliminate ELMs 
for divertor survivability
— ELM-less regimes, with 

continuous pedestal 
regulation, below the 
peeling-ballooning stability 
limit, could be key
 Possibilities include I-mode 

and QH-mode

C-Mod naturally operates ELM-suppressed



29Marmar, 18th ICPP 2016 27 June

New technologies yield design advantages at high-B and small size:
Robust, steady-state, far from disruptive limits

nT ∝
∗

.

DIII-D ARIES-AT ARC

B0 (T) 2 5.8 9.2

q95 6.3 3 7 .2

H89 2.7 2.5 2.8

βN 3.7 5.4 2.6

G = βNH89/q2 0.25 1.5 0.14

fbootstrap 0.65 0.91 0.63

n / nGreenwald 0.5 0.9 0.65

• Steady-state scenario using high safety-factor, 
moderate  approach

• ARC scenario ACHIEVED in present moderate-
B devices (e.g. DIII-D)
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New technologies yield design advantages at high-B and small size:
Robust, steady-state, far from disruptive limits

DIII-D ARIES-AT ARC
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βN 3.7 5.4 2.6

G = βNH89/q2 0.25 1.5 0.14

fbootstrap 0.65 0.91 0.63

n / nGreenwald 0.5 0.9 0.65

• Steady-state scenario using high safety-factor, 
moderate  approach

• ARC scenario ACHIEVED in present moderate-
B devices (e.g. DIII-D)
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Near-term, small-scale research can pursue this exciting 
path for fusion energy

DTT



32Marmar, 18th ICPP 2016 27 June

Candidate High-Field Configurations Proposed 
for Divertor Test Tokamak

R=2.2 m, B0=6 T 
Ip=6 MA

Advanced Divertor
eXperiment

R=0.73 m, B0=8 T 
Ip=2 MA

ENEA DTTin-depth understanding of 
the science for projection 
to reactors needs a 
flexible facility that allows 
innovative divertor and 
plasma facing component 
options with rapid 
evaluation cycles*

*Report on Science Challenges and Research Opportunities in Plasma Materials 
Interactions, MAY, 2015: 
www.burningplasma.org/resources/ref/Workshops2015/PMI/PMI_fullreport_21
Aug2015.pdf



33Marmar, 18th ICPP 2016 27 June

Modularity and small size should be enabling to 
solving critical issues of divertor heat exhaust

• Advanced divertor coils built into modular 
core as replaceable components
 Exploit physics advances from 

expanded volume divertors

Compact, High-Field, Divertor Test 
Tokamak (DTT)*

*D. Whyte, G04-02, Tues. AM
B. Labombard, et al., Nucl. Fusion, 55(2015)053020 Also test liquid metals
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Related power handling issue: What about low 
Q approaches to an FNSF?

• Could envision relaxing confinement and other 
performance metrics, if mission is nuclear testing, 
rather than energy production

• However, must consider the surface power 
handling problem at the same time
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Low Q (=Pfus/Paux) for Nuclear Materials Testing?

• Need minimum 14 MeV neutron 
fluence for sensible materials 
testing: desire at least 2 
MW/m2 @ high availability; 
more would be better

• First wall power loading 
(P+Paux) increases dramatically 
as Q reduced below 10
— Makes an already daunting 

PMI power handling 
problem look significantly 
worse

1.25 · ⁄ · 1 5⁄
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Disruptions Challenging for all High Performance 
Tokamaks; Compact, High B has Advantages

• Operating away from limits
— Staying further away from limits ( including density , q95, elongation), and 

staying below the no-wall N limit, should significantly reduce disruption 
probability

• Runaway electron growth dramatically reduced
— growth exponential with plasma current ( / ∝ . ∗ )

 high-field, compact designs are at lower plasma current (ITER=15 MA, 
ARC= 7.8 MA): . ∗ . 7 10

• Disruption forces not obviously more difficult for compact, high-field
+ IxB about the same; lever arms are smaller (lower stress)
+ distances can be smaller for mitigation actuators (gas, pellets)
– But, quench times faster for compact devices
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Must Sustain Plasma Current in Steady-State
• Bootstrap must provide substantial fraction

— Note that Iboot  poloidal not N

• Beam current-drive unlikely to be a solution for 
reactors

• ECCD works, but relatively low efficiency
• LHCD is higher efficiency at high B

— Accessibility for lower n|| at higher B 
higher efficiency, and damping at higher Te
(closer to core)

• Required power scales as IP*R
— compact, high-field wins on both counts
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High-field  Synergistic gains in CD efficiency
High-field side launch  launcher protection from PMI, fast ions, REs

FNSF-AT (5.5T) ARC (9.3T)

LHRF full-wave simulation: 
Strong single pass 

absorption at r/a~0.5

No fluctuation induced transport 
on High-Field Side (Double-Null



40Marmar, 18th ICPP 2016 27 June

Optimized CD efficiency leads to significant control of 
AT current profile, below no-wall βN limit

Lower
n//

Higher
n//

ARC simulation: Control of the q profile: Key 
actuator for enhanced H factor
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