

The High Magnetic Field Tokamak Path to Fusion Energy*

Earl Marmar**

MIT Plasma Science and Fusion Center

DCT

**With major contributions from: L. Bromberg, D. Brunner, J. Freidberg, M. Greenwald, Z. Hartwig, A. Hubbard, J. Irby, B. LaBombard, P. Michael, J. Minervini, R. Mumgaard, B. Sorbom, D. Terry, R. Vieira, D. Whyte, and the entire staff and students of the Alcator/PSFC team.

18th International Congress on Plasma Physics Kaohsiung, Taiwan 27 June 2016

*Partially supported by U.S. DoE

Fusion Energy Progress has been Truly Remarkable

- From 1970 to 1995, nτT, fusion power and fusion energy increased much faster than computing power (Moore's law)
 - nuch faster than computing power Moore's law) — more than 12 orders of magnitude increase in fusion energy per pulse

Fusion Energy Development has Slowed

- From 1970 to 1995, nτT, power and energy increased much faster than computing power (Moore's law)
- Why the slowdown?
 - research funding decreases
 - unit size of devices being designed and built is very large

High-Field Tokamaks Long Recognized as an Expedient Approach to Study Burning Plasmas

- Compact copper-magnet designs, including Ignitor, Zephyr, CIT/BPX, FIRE
 - Demonstrate and study alpha-dominant heating regimes, in pulsed operation
 - Since the required magnetic fields were not achievable with conventional superconductors, deemed by some to be a "dead end"

Ignitor

Zephyr

A Revolution in High Temperature Superconductors (HTS) in Last 5 Years

DCL

REBCO (Rare-Earth Barium Cu-Oxide) remains superconducting at VERY high B-field, and above liquid He temperatures

Industrial Maturity of High-B Superconductors Motivates Reconsideration

DCL

Possible game-changer for fusion energy

- Devices that produce net electricity could be built at smaller scale ⇒ sooner, lower cost
- Operating point would be more favorable for
 - Stability, control, sustainment, PMI, disruptionimmunity
- Higher temperature operation opens new options for jointed coils
 - flexibility, maintainability

Prototype HTS Joint

Recent Magnet Technology Advances Could Lead to Faster Development of Fusion Energy

Outline

- Superconducting Technology
- Confinement and Stability: Core and Pedestal
- Power Handling and Plasma-Wall Interactions

DCT

Next steps

REBCO: coated superconductors in robust tape form, commercially available

- Strong in tension due to hastelloy steel
- Flexible
- Outer Cu coating → simple solder lowresistance joint
- Stark contrast with Nb₃Sn superconductor strand & CIC!

Other Applications of REBCO High-Field, High Temperature Superconductor

- Electrical Transmission
- Electrical Energy Storage
- NMR/MRI
- Possible upgrades to LHC

Higher B: spatial resolving power ~B³

What limits B in an HTS Tokamak?

- Need sufficient volume for superconductor, with given j_c constraints
 - thin tape geometry advantageous
- Stay within structural stress limits
 - Understanding of mechanical stress and limits is a mature engineering discipline
 - Note that C-Mod successfully operates (1000's of cycles) at high fields (≤17 T at the coil), with demountable joints (copper)

Smaller, modular fusion devices can accelerate fusion's development

	Shippingport: 1954 "Pilot" Fission Plant	ITER
P _{thermal} (MW)	230	500
Core volume (m³)	60	~1000
Cost (2012 US B\$)	0.6	~ 20
Cost / volume (M\$/m³)	10	~ 20
Construction time (y)	~ 4	> 20

- Cost & time \propto unit volume and mass
- ITER is an <u>invaluable</u> science experiment for burning plasmas, not an optimized size for modular fusion energy "pilots"

— ITER is a trial of one fusion concept, fission pilot tried four different cores!

• Small size and modularity are self-reinforcing: pilots of complex engineered systems should be no larger than necessary, yet sufficiently capable

Integrated steady-state parameters required for advanced tokamak reactors (@B≤6 T) not yet achieved

	DIII-D	ARIES-AT
B ₀ (T)	2	5.8
q ₉₅	6.3	3
H ₈₉	2.7	2.5
β_N	3.7	5.4
$G = \beta_{\rm N} H_{89}/q^2$	0.25	1.5
f _{bootstrap}	0.65	0.91
n / n _{Greenwald}	0.5	0.9

Najmabadi et al. FED **80** (2006) Chan et al. NF (2011) A.C.C. Sips, Plasma Phys.Control.Fusion, **47**(2005)A19–A40 Zarnstorff Demo workshop 2012

DSEC

Confinement physics strongly favors high B to produce fusion capable devices at smaller size

Gain
$$nT \tau_E \sim \frac{\beta_N H}{q_*^2} R^{1.3} B^3$$
 $V, \$ \propto R^3$ $P_{fusion} \sim \frac{\beta_N^2 \epsilon^2}{q_*^2} R B^4$ Power densityCopper coil pulse ~ 40 s $\boxed{\mathbf{N} (\mathbf{m}^3)$ 30 $\boxed{\mathbf{B}_o(\mathbf{1})$ 10 $\boxed{\mathbf{N}_o(\mathbf{m}^3)}$ $\boxed{\mathbf{N}_o(\mathbf{m}^3)}$

DCIC

Known physics scaling + Superconductor $B_{peak} > 20 T \rightarrow$ High-gain burning plasma: Compact Size & Steady-State

High B permits a pedestal with required pressure for fusion performance, away from Peeling-Balooning stability limits

- Reactor/FNSF pedestal is constrained: $T \sim 5 \text{ keV} (D-T \text{ reactivity}), n_{20} \sim 1$ $\rightarrow p_{ped} \sim 0.15 \text{ MPa} (\sim x1.5 p_{ped, TER})$
- But the P-B limit, defined in β_N , cannot be violated due to PFC damage from ELMs.
- This greatly favors high B² to push the required pedestal away from the P-B limit, and to be consistent with non-disruptive high q_{*}

High B permits a pedestal with required pressure for fusion performance, away from P-B stability limits

DCL

- Example: take pedestal width, r/a~5%, fix aspect ratio and shaping of ITER, FIRE, ARC
 - this reduces to requirement for minimum B^2/q

$$\beta_{N,ped,\lim} \propto \frac{p_{ped}}{p_B} \frac{5\epsilon}{q_*} \frac{\left(1+\kappa^2\right)}{2} \quad \Longrightarrow \quad \frac{B^2}{q_*} > 10\left(\frac{p_{ped,MPa}}{0.15}\right)$$

• Key transport physics requirement...some transport regulation mechanism to hold pressure below limit (QH-mode, I-mode, etc.)

ARC designed with scaled I-mode profiles from C-Mod to assess I-mode viability in non-inductive burning plasma regime.

- Key transport physics requirement...some transport regulation mechanism to hold pressure below limit (QH-mode, I-mode, etc.)
- I-mode* is a naturally ELM-suppressed regime
 - H-mode confinement, strong temperature pedestal
 - Lack of density barrier helps to move pedestal further from P-B limit
 - L-mode impurity confinement: no accumulation
- ARC pedestal below simple β_N limit

High Field Favors I-mode over H-mode

- Need to stay out of H-mode at high power
 - Run with BXVB away from xpoint (~doubles H-mode threshold)
- How does high B (≥ 8 T) play into the access for I-mode and avoidance of unwanted ELMy Hmode?
 - Increase B, to further increase H-mode threshold $(P \sim B^{0.8})$
 - I-mode threshold shows no, or at most weak scaling with B (P~B^{0.2})

Doesn't Compact, High Field Make the Divertor Power Handling Problem Harder?

Surface Power Handling is a Significant Challenge in all Reactor Concepts

- Comparing ACT2 (R=9.8 m, P_{SOL}/S=.4 MW/m²) and ARC (R=3.3m, P_{SOL}/S=.7 MW/m²)
 - no significant difference in expected edge q_{//}

HTS could also be revolutionary for Stellarators

- High current density

 reduced coil pack size
- Strong, flexible
 - simpler coil design
 - does not require reacting after winding
- Slowly varying fields can simplify engineering requirements

*A. Sagara, et al., Fusion Engineering and Design, 87(2012)594

ARC* conceptual design example of "smaller, sooner" fusion device using new superconductors

ARC conceptual design example of "smaller, sooner" modular fusion devices using new superconductors

Peak stress ~ 0.67 Gpa

- Demountable magnetic field coils
 - enabled by jointed conductor
- Employ liquid blanket
- Single-unit vertical lift

Small, modular design features generically attractive for any MFE choice: ST, stellarator, liquid wall, etc.

Where are we now?

- Superconducting technology advance opens a new window for a faster path
 - HTS coils are a reality; not yet at scale needed for fusion
 - Jointed construction would yield significant improvements in flexibility, maintainability
 - R&D required
- Physics basis already largely demonstrated
 - Need improved surface power handling

What can/should we do moving forward?

- Fusion is needed, and soon: As a community we need to be continually looking for technology and science innovations to accelerate fusion's development.
- HTS High Field Magnet R&D for fusion:
 - Full scale models; Joint development
- Aggressive research to solve the power handling and sustainment challenges:

Existing, and new purpose-built facilities, to meet the challenges

Combine in a net-electricity producing Pilot

DSEC

April 2015: New record of 26.4 Tesla with REBCO-only, "no-insulation" coil

L- and H-mode Confinement Tied to Pedestal Pressure I-mode at least as good as H-mode, if not better

DCT

- Nearly universal curve for L-mode
 and H-mode
- Need to reduce or eliminate ELMs for divertor survivability
 - ELM-less regimes, with continuous pedestal regulation, below the peeling-ballooning stability limit, could be key
 - Possibilities include I-mode and QH-mode

New technologies yield design advantages at high-B and small size: Robust, steady-state, far from disruptive limits

	DIII-D	ARIES-AT	ARC	$P_{fusion} = \beta_N^2 \epsilon^2 p p 4$	
B ₀ (T)	2	5.8	9.2	$\frac{1}{S_{wall}} \sim \frac{1}{q_*^2} RB^4$	
q ₉₅	6.3	3	7.2		
H ₈₉	2.7	2.5	2.8	$nT\tau_{E} \propto \frac{\beta_{N}H}{2}R^{1.3}B^{3}$	
β_{N}	3.7	5.4	2.6	$q_*^2 = q_*^2$	
$G = \beta_{\rm N} H_{89}/q^2$	0.25	1.5	0.14	Kink limit	
f _{bootstrap}	0.65	0.91	0.63	mplex inits	
n / n _{Greenwald}	0.5	0.9	0.65	coontrol intificial safer FNSE ARIES-AT	
Steady-state scenario using high safety-factor					

DCLC

Bootstrap

fraction

f_{Bs}=1

VDE limit

K~1.8

- Steady-state scenario using high safety-factor, moderate β approach
- ARC scenario ACHIEVED in present moderate-B devices (e.g. DIII-D)

limit

βN~3

Density limit

f_{Gr}=1

New technologies yield design advantages at high-B and small size: Robust, steady-state, far from disruptive limits

	DIII-D	ARIES-AT	ARC
B ₀ (T)	2	5.8	9.2
q ₉₅	6.3	3	7.2
H ₈₉	2.7	2.5	2.8
β_N	3.7	5.4	2.6
$G = \beta_N H_{89}/q^2$	0.25	1.5	0.14
f _{bootstrap}	0.65	0.91	0.63
n / n _{Greenwald}	0.5	0.9	0.65

- Steady-state scenario using high safety-factor, moderate β approach
- ARC scenario ACHIEVED in present moderate-B devices (e.g. DIII-D)

Near-term, *small-scale* research can pursue this exciting path for fusion energy

High-Field Superconducting Magnet Development

DCI

Candidate High-Field Configurations Proposed for Divertor Test Tokamak

Advanced Divertor eXperiment

in-depth understanding of the science for projection to reactors needs a flexible facility that allows innovative divertor and plasma facing component options with rapid evaluation cycles* ENEA DTT

R=2.2 m, B₀=6 T

 $I_{p}=6 MA$

*Report on Science Challenges and Research Opportunities in Plasma Materials Interactions, MAY, 2015: www.burningplasma.org/resources/ref/Workshops2015/PMI/PMI_fullreport_21 Aug2015.pdf Modularity and small size should be enabling to solving critical issues of divertor heat exhaust

DCLC

- Advanced divertor coils built into modular core as replaceable components
 - Exploit physics advances from expanded volume divertors

*D. Whyte, G04-02, Tues. AM B. Labombard, et al., Nucl. Fusion, 55(2015)053020

Related power handling issue: What about low Q approaches to an FNSF?

- Could envision relaxing confinement and other performance metrics, if mission is nuclear testing, rather than energy production
- However, must consider the surface power handling problem at the same time

Low Q ($=P_{fus}/P_{aux}$) for Nuclear Materials Testing?

- Need minimum 14 MeV neutron fluence for sensible materials testing: desire at least 2 MW/m^2 @ high availability; more would be better
- First wall power loading $(P_{\alpha} + P_{\alpha \mu \nu})$ increases dramatically as Q reduced below 10
 - Makes an already daunting PMI power handling problem look significantly worse

Low Q (=P_{fus}/P_{aux}) for Nuclear Materials Testing?

- Need minimum 14 MeV neutron fluence for sensible materials testing: desire at least 2 MW/m² @ high availability; more would be better
- First wall power loading $(P_{\alpha}+P_{aux})$ increases dramatically as Q reduced below 10
 - Makes an already daunting PMI power handling problem look significantly worse

Disruptions Challenging for all High Performance Tokamaks; Compact, High B has Advantages

- Operating away from limits
 - Staying further away from limits (including density , q_{95} , elongation), and staying below the no-wall β_N limit, should significantly reduce disruption probability
- Runaway electron growth dramatically reduced
 - growth exponential with plasma current $(I_{runaway}/I_{seed} \propto e^{2.5*Ip})$
 - high-field, compact designs are at lower plasma current (ITER=15 MA, ARC= 7.8 MA): $e^{2.5*(15-7.8)} = 7x10^7$
- Disruption forces not obviously more difficult for compact, high-field
 - + IxB about the same; lever arms are smaller (lower stress)
 - + distances can be smaller for mitigation actuators (gas, pellets)
 - But, quench times faster for compact devices

Must Sustain Plasma Current in Steady-State

DCI

- Bootstrap must provide substantial fraction
 - Note that $I_{\text{boot}} \propto \beta_{\text{poloidal}}$ not β_{N}
- Beam current-drive unlikely to be a solution for reactors
- ECCD works, but relatively low efficiency
- LHCD is higher efficiency at high B
 - Accessibility for lower $n_{||}$ at higher B \Rightarrow higher efficiency, and damping at higher Te (closer to core)
- Required power scales as I_P*R
 - compact, high-field wins on both counts

High-field \rightarrow Synergistic gains in CD efficiency High-field side launch \rightarrow launcher protection from PMI, fast ions, REs

Optimized CD efficiency leads to significant control of AT current profile, below no-wall β_N limit

Control of the q profile: Key

ARC simulation:

