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Accessing high quality H-mode on ITER 
will be crucial to its success
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• However, when we talk about access to high performing H-
mode, we are really talking about the edge pedestal
– Core profile stiffness dictates that global performance in H-

mode is highly dependent on the edge pedestal 
– Confidence has grown that modeling can project core transport 

and confinement, if only pedestal is known

0.0 0.2 0.4
Radius, ρRadius, ρ

0.6 0.8 1.0
0
2

4

6
8

0
5

10
15
20
25ne(ρ) (1019 m-3) Te (ρ) (keV)

0.0 0.2 0.4 0.6 0.8 1.0

FASTRAN
TOPICS
TRANSP
CRONOS
ASTRAi
ASTRAk

Modeling 
steady state 
discharges 
in ITER

Murakami, 
NF11



Modeling suggests impact of pedestal 
on fusion performance is not small
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Questions we would like to answer:
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1. What are the access conditions for high 
confinement, and how do we extrapolate to 
ITER?
– ITER has finite available input power. 
– Is it enough to trigger L-H transition at the desired 

values of BT, IP, n, A, Z, etc.?
– Will there be enough power to access and sustain 

H98=1? 

2. Can we understand factors determining pedestal 
structure and improve predictive capability?
– Both transport and MHD stability

3. What can we learn from the dynamics of barrier 
formation, and pedestal transients?
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I. ACCESS CONDITIONS 
FOR HIGH CONFINEMENT



Scaling laws for H-mode power 
threshold serve as guidelines at best 
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• Latest power law from 
multi-machine database 
gives
– Pth ~ n0.72 BT

0.80 S0.94

• But density dependence is 
non-monotonic on many 
devices!

• Additional dependence of Pth
on main ion A,Z can also be 
observed – Gohil, P1.6
– Important for the non-

active He phase of ITER 
• Even the BT dependence 

seems to break down in 
some cases

• Then there are the “hidden 
variables”, e.g. neutrals or 
divertor configuration . . .
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Scaling laws for H-mode power 
threshold serve as guidelines at best 
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• But density dependence is 
non-monotonic on many 
devices!

• Additional dependence of Pth
on main ion A,Z can also be 
observed – Gohil, P1.6
– Important for the non-

active He phase of ITER 
• Even the BT dependence 

seems to break down in 
some cases

• Then there are the “hidden 
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H-mode access and H98=1 sustainment
is a non-trivial problem
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• L-H transition criteria likely have a rich physical origination
– Suppression of background turbulent transport must be 

accomplished critical thresholds in local profiles?
– Local profiles set by mixture of core, near-separatrix and SOL 

transport processes . . . complex
– Dynamics of turbulence and flow fields could be important

• Many posters at the workshop examine the L-H threshold
– Three preview talks in this session

• G. Xu, P3.2, “The role of zonal flows for the L-H transition at 
marginal input power in the EAST tokamak”

• W. Fundamenski, P3.14, “A new model of the L-H transition in 
tokamaks”

• P. Sauter, P3.21, “Evidence for the role of the ion channel in the L-
H transition at low density in ASDEX Upgrade”

– Others:
P1.6 P. Gohil
P3.3 W. Weymiens
P3.10 R. Chen
P3.11 K. Miki 

P3.12 L. Guazzotto
P3.19 F. Ryter
P3.13 N. Yan
P3.24 D. Battaglia
P3.27 E. Solano

P3.28 A. Hubbard
P3.29 J.-W. Ahn
P3.35 B. Chatthong
P5.23 Y. Sechrest
P5.24 S. Zoletnik



H-mode access and H98=1 sustainment
is a non-trivial problem

8 of 39J.W. Hughes, 13th International Workshop on H-mode Physics and Transport Barriers, Oxford, UK, Oct. 2011 

• Unlike most current devices, 
ITER will not operate with large 
Pin/Pth,scaling

• The impact of low power ratios 
on confinement has been 
studied on multiple machines, 
through an ITPA-organized 
activity 
– (Y. Martin, P1.7)

• Results can depend on desired 
n/nG, radiated power 
distribution, other factors

– See also Beurskens, P3.25; 
Urano, P3.17; Ahn, P3.29; 
Lebedev, P3.34 Maggi, P3.22

JET



H-mode access and H98=1 sustainment
is a non-trivial problem
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• Unlike most current devices, 
ITER will not operate with large 
Pin/Pth,scaling

• The impact of low power ratios 
on confinement has been 
studied on multiple machines, 
through an ITPA-organized 
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H-mode access and H98=1 sustainment
is a non-trivial problem
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• Unlike most current devices, 
ITER will not operate with large 
Pin/Pth,scaling

• The impact of low power ratios 
on confinement has been 
studied on multiple machines, 
through an ITPA-organized 
activity 
– (Y. Martin, P1.7)

• Results can depend on desired 
n/nG, radiated power 
distribution, other factors

– See also Beurskens, P3.25; 
Urano, P3.17; Ahn, P3.29; 
Lebedev, P3.34

C-Mod

J. Hughes, NF11

Baseline H-mode confinement 
depends robustly on pedestal
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II. PEDESTAL STRUCTURE 
AND DEVELOPMENT OF 
PREDICTIVE CAPABILITY
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Steps toward obtaining predictive 
capability for the H-mode pedestal
• Developing predictive capability for the H-mode pedestal: an 

overarching theme for pedestal research
– Focus of DoE FES Joint Research Target (JRT) for FY11
– Goal: improve our knowledge of the physics processes that control the 

H-mode pedestal by applying models of these mechanisms to 
experimental data.

• Significant experimental resources devoted to pedestal studies on 
Alcator C-Mod, DIII-D and NSTX

• Increased collaborations among facilities, and with 
theory/modeling groups
– GA Theory, Georgia Tech, LLNL, MIT, PPPL, Tech-X, UC Irvine, UCSD, 

U. Colorado, U. Toronto, U.Wisconsin
• Some physics mechanisms evaluated

– Neoclassical transport - Paleoclassical transport
– Electron temperature gradient (ETG) modes
– Peeling-ballooning (PB) stability - Kinetic ballooning modes (KBM)
– Resistive ballooning modes - Neutral fuelling
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Ultimate limits on pedestal growth 
increasingly well understood

• Growth of pedestal ultimately 
constrained by intermediate 
wavelength MHD instabilities
– Snyder P3.4, X. Xu P2.22, 

Webster, P3.33
• Peeling-ballooning modes driven 

by edge pressure gradient and 
current

• Manifest as Type-I ELMs
• Calculations for linear growth 

rates increasingly well 
benchmarked (GATO, ELITE, 
BOUT++)

• Predictive capability? Couple 
stability calculations to analytic 
or computational pedestal 
models for width/gradient
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Ultimate limits on pedestal growth 
increasingly well understood

• Growth of pedestal ultimately 
constrained by intermediate 
wavelength MHD instabilities
– Snyder P3.4, X. Xu P2.22, 

Webster, P3.33
• Peeling-ballooning modes driven 

by edge pressure gradient and 
current

• Manifest as Type-I ELMs
• Calculations for linear growth 

rates increasingly well 
benchmarked (GATO, ELITE, 
BOUT++)

• Predictive capability? Couple 
stability calculations to analytic 
or computational pedestal 
models for width/gradient
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EPED class of models is an example of a 
testable pedestal prediction
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• EPED1.x model couples 
peeling-ballooning stability 
limits to pedestal width 
model
– Dominant empirical 

dependence: ∆ψ~βpol
1/2

– Kinetic ballooning modes
are the width limiting 
mechanism in EPED 1.6x

• Confidence level has 
increased to the point that 
predictions are made 
before experiment 
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Snyder, P3.4

• Tests of EPED have expanded to include large range of device 
size, discharge type
– EPED used to interpret recent DIII-D/C-Mod identity experiment
– Comparisons of baseline and hybrid discharges in JET, with weak and 

strong shaping



EPED class of models is an example of a 
testable pedestal prediction
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Snyder, P3.4
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model
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1/2
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EPED class of models is an example of a 
testable pedestal prediction
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• EPED1.x model couples 
peeling-ballooning stability 
limits to pedestal width 
model
– Dominant empirical 

dependence: ∆ψ~βpol
1/2

– Kinetic ballooning modes
are the width limiting 
mechanism in EPED 1.6x

• Confidence level has 
increased to the point that 
predictions are made 
before experiment 

Beurskens, P3.25;
Snyder, P3.4

• Tests of EPED have expanded to include large range of device 
size, discharge type
– EPED used to interpret recent DIII-D/C-Mod identity experiment
– Comparisons of baseline and hybrid discharges in JET, with weak and 

strong shaping



EPED shows promise when compared to 
experiment, but what issues remain?
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• Success of EPED hinges on 
∆~C0βp

1/2

– Can we rule out other width 
models?

• Is the KBM the dominant 
mechanism limiting the width? 
– Can we see the KBM in either 

experiment or modeling? 
– Or identify cases where the KBM 

constraint breaks down? 
• Lithiumized H-modes in NSTX? 
• Dependence of pedestal 

evolution on fueling rate in JET? 
– Beurskens, P3.25

• Mechanisms that limit n, T gradients independently of p are not 
included
– ITER performance will be sensitive e.g. to how the pedestal and core fuel

• EPED provides ultimate pressure limit for a given width model in ELMy
H-mode
– What about ELM-suppressed regimes?

DIIID
C-MOD
~JET

A. Diallo, NF11



Multi-machine studies used for non-
dimensional pedestal width scalings
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• JET/DIII-D matching 
experiment finds near 
independence of 
pedestal width with ρ*
– Inconsistent with 

models of shear 
suppression of drift 
wave turbulence 
predicting ∆~ρ*(1/2)

• Slightly positive scaling 
of ∆ne with ρ* associated 
with a shift in the ne
pedestal relative to Te
pedestal seen on DIII-D

• Neutral fueling effect?
• Extensions of width 

study to AUG, C-Mod are 
ongoing 
– Schneider P3.5

Osborne, P.3.15; see also Beurskens, PoP11



What can theory and simulation reveal 
about transport-limited pedestal?
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• Pedestal model based on 
paleoclassical processes 
gives irreducible level of 
transport

• Comparisons with DIII-D 
database performed

• Model gradients ≥ exp. 
gradients
– Consistent with P.C. setting 

minimum level of transport 
• P.C. predictions of pedestal 

profiles of χe, ne compare 
favorably in analyzed DIII-D 
and NSTX discharges 
– Callen, sub. PRL; Canik, 

PoP11
Smith, P3.1; Callen, P3.18



What can theory and simulation reveal 
about transport-limited pedestal?
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• Calculations of neoclassical transport (e.g. with XGC0) show that 
additional anomalous transport is required to relax pedestal 
gradients 

• Predictions from paleoclassical-based model can yield similar 
results – Smith, P3.1

• Not surprising. Experimentalists see turbulence everywhere, and 
most of it probably drives some sort of transport

Minor Radius
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ITG, µTearing, 
TEM? ETG, 

KBM?



What can theory and simulation reveal 
about transport-limited pedestal?
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• Calculations of neoclassical transport (e.g. with XGC0) show that 
additional anomalous transport is required to relax pedestal 
gradients 

• Predictions from paleoclassical-based model can yield similar 
results – Smith, P3.1

• Not surprising. Experimentalists see turbulence everywhere, and 
most of it probably drives some sort of transport

• BOUT++ has been used to identify potential unstable resistive 
ballooning modes in C-Mod EDA H-modes – Xu, P2.22

• Gyrokinetic simulations implemented in a number of codes are 
extended into the pedestal region 
– GYRO (eigenvalue code) and GEM (initial value code) are benchmarked 

on a common DIII-D case – Wang/Xu P3.32
• ITG modes dominant inside ψn~0.96 
• Mix of Alfvenic and drift wave modes in the pedestal 
• KBM is difficult to resolve

– GS2 (local GK code) simulations on MAST identify a transition between 
microtearing modes and KBMs at the pedestal - Saarelma, P2.23; 
Roach, P3.36
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III. DYNAMICS OF PEDESTAL 
FORMATION, FLUCTUATION 
EVOLUTION



What can transients in the pedestal 
teach us?
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• High time and spatial resolution diagnostics, combined with 
repeatable ELM-cycles, yield extensive information about 
pedestal evolution
– e.g. Eldon, P5.18; Osborne, P3.15; Beurskens, P3.25

• Time scales of evolution, pedestal structure, can answer 
questions about physical processes limiting pedestal

Burckhart, PPCF10

Slow ELMs Fast ELMs
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Gyrokinetic tests of the KBM and 
associated width evolution 

Increasing time
in ELM cycle

Saarelma, P2.23; Roach, P3.36

KBM

Microtearing

• MAST: (dp/dψ)max almost constant 
through the ELM cycle as pedestal 
widens
– Entire pedestal ideal MHD n= ∞

ballooning and kinetic ballooning 
mode unstable

– Finite n limit decreases during the 
ELM cycle and meets the 
experimental value just before an 
ELM.

• EPED idea that KBMs limit dp/dψ
and the finite n modes limit the 
width seems ok.

• Pressure pedestal evolution 
qualitatively similar on AUG 
(Burckhart, PPCF10), DIII-D 
(Osborne, P3.15), NSTX (Diallo, 
P5.22)

• But, on JET, pressure width is 
fixed or decreasing during ELM 
cycle (Saarelma, P2.23; 
Beurskens, P3.9)

MAST
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Gyrokinetic tests of the KBM and 
associated width evolution
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• MAST: (dp/dψ)max almost constant 
through the ELM cycle as pedestal 
widens
– Entire pedestal ideal MHD n= ∞

ballooning and kinetic ballooning 
mode unstable

– Finite n limit decreases during the 
ELM cycle and meets the 
experimental value just before an 
ELM.

• EPED idea that KBMs limit dp/dψ
and the finite n modes limit the 
width seems ok.

• Pressure pedestal evolution 
qualitatively similar on AUG 
(Burckhart, PPCF10), DIII-D 
(Osborne, P3.15), NSTX (Diallo, 
P5.22)

• But, on JET, pressure width is 
fixed or decreasing during ELM 
cycle (Saarelma, P2.23; 
Beurskens, P3.9)
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Gyrokinetic tests of the KBM and 
associated width evolution

Beurskens, P3.25

JET

High 
fuelling

Low 
fuelling

• MAST: (dp/dψ)max almost constant 
through the ELM cycle as pedestal 
widens
– Entire pedestal ideal MHD n= ∞

ballooning and kinetic ballooning 
mode unstable

– Finite n limit decreases during the 
ELM cycle and meets the 
experimental value just before an 
ELM.

• EPED idea that KBMs limit dp/dψ
and the finite n modes limit the 
width seems ok.

• Pressure pedestal evolution 
qualitatively similar on AUG 
(Burckhart, PPCF10), DIII-D 
(Osborne, P3.15), NSTX (Diallo, 
P5.22)

• But, on JET, pressure width is 
fixed or decreasing during ELM 
cycle (Saarelma, P2.23; 
Beurskens, P3.9)



Pedestal saturation: Looking for signatures 
in the turbulence
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Yan, PoP11

• DIII-D: Correlation between 
broadband turbulence and  
pressure gradient observed 
between ELMs
– Relative dn/n in pedestal 

increases to ~ 80% within a 
few ms, then saturates, or 
increases more slowly

– Similar trend observed for 
electron pressure gradient

• Cause and effect? Does 
broadband turbulence stop 
pressure rise?

• Turbulence has 
characteristics expected for 
KBM

• Additional KBM candidate 
found in QH-mode, replacing 
EHO

ρ* = 0.4%

ρ* = 0.6%



Pedestal saturation: Looking for signatures 
in the turbulence
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Yan, PRL11

• DIII-D: Correlation between 
broadband turbulence and  
pressure gradient observed 
between ELMs
– Relative dn/n in pedestal 

increases to ~ 80% within a 
few ms, then saturates, or 
increases more slowly

– Similar trend observed for 
electron pressure gradient

• Cause and effect? Does 
broadband turbulence stop 
pressure rise?

• Turbulence has 
characteristics expected for 
KBM

• Additional KBM candidate 
found in QH-mode, replacing 
EHO

crosspower density fluctuations 
from BES at psin ~ 0.95 

HFC modes

Pedestal electron pressure

EHO



Similar techniques can be used to study 
the evolution of pedestal following L-H
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ne

Max.∇pe [MPa/m]

Dα

C-Mod• Evolution of pedestal and 
fluctuations diagnosed in EDA H-
modes on C-Mod
–– QuasiQuasi--coherent mode (QCM)coherent mode (QCM)

amplitude saturation correlates 
with pedestal gradients achieving 
stationary values

• Time scales of pedestal evolution 
important to characterize, model 
for ITER
– Affects alpha heating rate, H-mode 

sustainment
– Time to first unmitigated ELM?

• Pedestal evolution studies can also 
give insight into transport 
processes that set pedestal 
structure 
– Pankin, P5.4; Willensdorfer, 

P3.23, Diallo, P5.22; Zoletnik, 
P5.24



Other interesting questions about the 
H-mode pedestal and confinement

33 of 39J.W. Hughes, 13th International Workshop on H-mode Physics and Transport Barriers, Oxford, UK, Oct. 2011 

• How does pedestal fuel? 
– Pinch vs. diffusive particle transport vs. neutral penetration
– A fundamental predictive capability for the density pedestal is 

highly desirable, as the ITER edge will be thick to neutrals like 
no existing device

– Canik, P3.6; Stacey, 5.14
• How does species mix affect pedestal and confinement?

– Urano, P3.17
• Effects of edge rotation and rotation shear on the pedestal

– ITER will not have driven rotation, like today’s NBI-heated 
devices

– Some of the most dramatic changes in pedestal structure are 
associated with changes in pedestal Ω or dΩ/dψ

– Sontag, P3.7; Maingi, P3.16; Kamiya, P3.20
• Are there differences associated with dominant electron vs. 

ion heating?
– Sommer, P1.8; Lore, P3.8



Other interesting questions about the 
H-mode pedestal and confinement
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• How do we explain 
(and exploit) 
pedestals in regimes 
where particle and 
thermal transport are 
partially decoupled 
– (e.g. I-mode, QH-

mode, EP H-mode)?
– Increasing the ratio of 

particle to thermal 
transport high 
confinement with ELMs
naturally suppressed

– Garofalo, P1.2; Maingi, 
P3.16; Hubbard, P3.28

C-Mod
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DISCUSSION POINTS



Improving understanding of pedestal 
structure: possible discussion points
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• Confident area: peeling-ballooning modes provide upper bound on 
pedestal pressure

• What limits the radial extent of the pedestal? 
– Why does transport blow up inside ψ∼0.93—0.97? 
– Is KBM-like description of ∆ψ~βpol

1/2 good enough?
– Are there better candidate mechanisms for determining width, say yielding a 

∆R~R dependence?
• Pedestal height limits in ELM-suppressed regimes will they extrapolate 

favorably to ITER?
• Can we model the time scales of pedestal evolution following L-H? 

Between ELMs?
• Models often do not treat density, temperature profiles independently

– But they must in order to explain cases like I-mode
• Pedestal fueling and particle transport is not well understood in H-mode 

plasmas
– What interpretative modeling and experimental diagnosis is needed?

• Details of turbulence suppression and transport reduction in barrier are 
critical for understanding. What are the dominant modes and where?



Improving understanding of L-H 
transition: possible discussion points

37 of 39J.W. Hughes, 13th International Workshop on H-mode Physics and Transport Barriers, Oxford, UK, Oct. 2011 

• L-H transition trigger: is it just shear suppression 
of turbulence, or is there something more?

• Can local quantities uniformly describe L-H 
trigger, in the same way that pedestal pressure 
sets core confinement in H-mode?

• What of the interplay of turbulence and flows 
leading up to the transition? How prevalent are 
limit-cycle oscillations?

• Relating local L-H triggers to power requirements
– Is there simple theory that can do this? 
– Is there any theory that can do this?



Preview Talks

38 of 39J.W. Hughes, 13th International Workshop on H-mode Physics and Transport Barriers, Oxford, UK, Oct. 2011 

• A. Diallo
– “Observation of Turbulence Correlation in the Pedestal 

during the Inter-ELM phase in NSTX” (P5.22)

• W. Fundamenski
– “A new model of the L-H transition in tokamaks” (P3.14)

• G. Xu
– “The role of zonal flows for the L-H transition at 

marginal input power in the EAST tokamak” (P3.02)

• P. Sauter
– “Evidence for the role of the ion channel in the L-H 

transition in ASDEX Upgrade” (P3.21)



End of talk
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Overview of I-mode regimeOverview of I mode regime
• In plasmas with unfavorable ion B×∇B drift, away p , y

from the active X-point, as input power is raised, 
typically get separation of thermal and particle transport 
barriersbarriers.

• First, in I-mode regime*, get only a thermal/temperature 
barrier.

• At still higher power, get transition to traditional H-mode, 
with also a particle/density barrier.

* Note:  This phenomenon, first observed transiently,  was referred to 
as “slow transitions” or “Improved L-Mode” in prior H-mode 
workshop presentations [Hubbard HMW 2007 HMW2009] and onworkshop presentations [Hubbard HMW 2007, HMW2009], and on 
ASDEX Upgrade [Ryter 1998].



I-mode regime has Te and Ti
pedestal, without density barrier.p , y

• Steep T pedestal (electrons 
Alcator C-Mod

and ions) leads to increased 
core T, stored energy.

• L-mode density profile, 
broad SOL.

• H-mode has similar T 
pedestal, but much higher 
and steeper density 
pedestal.



I-modes have now been  maintained in 
steady statey

• I-modes maintained 
on C-Mod with steady 

diti fconditions for many 
τE, in many cases 
limited by plasma and 
heating pulse durationheating pulse duration.

• Usually ELM-free.

St d I d h• Steady I-modes have 
also been observed on 
ASDEX Upgrade 

[Ryter EPS 2011, 
Hubbard EPS 2011]

1.3 MA
5.6 T, 
USN



I-mode regime combines L-mode like particle 
transport with thermal confinement ~ H-mode 

τI in ELM-free 
H-mode  up to 2 sec. τE,98,y2 ~ Ip0.93 n0.41 PL

-0.69 B0.15

~170 I-modes 

τI measured with laser Wide data set shows H98,y2 0.7-1.2,I
ablation of Ca. 

[Whyte, NF 2010 ]

98,y2 
But some differences in τE scaling, 
notably much lower power   
degradation. 



Changes in edge fluctuations at 
L-I and I-H transitionsL I and I H transitions

• At L-I transition, as the T 
pedestal forms, see 
– DECREASE in edge 

broadband turbulence (n 
and B) in mid-f range 
(~60-150 kHz)

– PEAK in turbulence at 
higher f “weakly coherent 
mode” (~ 250 kHz)

At the I H mode (particle

Reflectometry freq spectra

• At the I-H-mode (particle 
barrier) transition, remaining 
turbulence drops suddenly, 
n rises Suggests WCM is

1.3MA, 5.8T
q95=3.1

ne rises.  Suggests WCM is 
contributing to particle 
transport in I-mode.



Edge thermal transport is 
correlated with mid-f turbulence

• Edge ∇T is steepening at 
L-I transition, at near-constant 
Pnet and edge ne

⇒ edge χ is decreasing.
• Little or no change in Dα, Lyα, g α, yα,

density profiles or impurity 
confinement indicates that 
particle transport is NOT 
changing significantly.

• Decrease in edge χ from L to I-
mode correlates on C-Mod to 

Hubbard 
PoP 2011

the drop in mid-f turbulence. 
(~60-150 kHz)
– Sharpest drop at low q95. 30 ms

q95=3.1

– Analysis of vExB shows spectral 
changes are not dominated by 
Doppler shifts. 



L-I and I-H Power 
h h ldThresholds

• In unfavorable drift, thresholds for L-I and I-H transitions:
– Are generally higher than L-H thresholds with favorable drift.
– Scale very differently than usual L-H scalings (developed for 

favorable drift).)
– Have a lot of overlap

K ti• Key questions:
– What physics determines L vs I vs H regime?
– How to reliably obtain and stay in I-mode avoiding– How to reliably obtain and stay in I-mode, avoiding 

H-mode transition?  How wide is the “power window”?
– Is there hysteresis?  



Transition thresholds do not fit 
ITER L-H scalings

I-Mode Pthresh/Martin scaling • Strong q95 dependence I-Mode Pthresh/Martin scaling

3

4

ti
n

) 

(higher Pthresh at higher Ip).

• Large scatter at given q95, 
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P
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-H
 (
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rt
in
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indicating other 
dependences are different.

1P
lo

s
s
/P

L

I-H trans (5-6 T)

L-I trans (5-6 T)

• Large overlap between L-I
and I-H thresholds; scalings 
[eg Martin 2008]  do not 

2 3 4 5 6
q95(MA)

0

I-H trans (5-6 T)

I-H trans (3-3.5 T) predict which regime a 
plasma will be in at given 
power.

q95(MA)

New power scalings for transitions with 
unfavorable drift are needed!



Wide database of I-modes 
and transitions on C-Mod

• Unfavorable drift: Both USN, and nebar vs Ip at transitions
LSN, reversed BT.

• ICRF Heating; D(H) minority and 
D(He3) mode conversion.

nebar vs Ip at transitions

2

3

-3
)

L-I trans 5-6 T, USN

L-I trans 5-6 T, LSN

• BT 3-6 T; For this study, 
restricted to 5-6 T since most 
discharges in this range:

2

b
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r 
(1

0
2
0
m

-3

– 169 I-mode time slices
– 39 L-I transitions
– 40 I-H transitions.

0

1

 n
e

b
a

I-H trans 5-6 T, USN

I-H trans 5-6 T, LSN
• Ip 0.8-1.35 MA.
• Average ne 0.8-2.4 x1020 m-3

– ne and Ip have some correlation,  so 

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Ip(MA)

0 I-H trans 5-6 T, LSN

e p ,
hard to separate dependences.

– Also LSN discharges (closed 
divertor) have lower ne.



L-I power threshold increases 
with Ip and ne

• Regression over all transitions 5

gives Ploss (L-I) ~ Ip ne
0.5   

• Fit underpredicts the highest 
current and density thresholds.

5-6 T, 1-1.1 MA LSN
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Density scan 
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shape 

L-I threshold, fit to all 5-6 T 
6
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Power “window” in I-modes up 
to 1.8x L-I threshold

Di id d i I d b• Divided power in I-modes by 
new “L-I scaling”.

– Range up to 1.5 in USN 
discharges 1 8 in LSN

6

W
) 2 x P(L-I)

discharges, 1.8 in LSN 
discharges.

• BUT I-H “thresholds” 
(blue points) are scattered 

4

P
o
w

e
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(M
W

( p )
randomly, often LOWER power 
than I-modes without transition 
(green).

5 6 T

2

In
p
u
t 
P

I-modes, vs L-I fit

I H L I fit

• I-H threshold conditions, 
scaling are not yet clear!

 5-6 T
0 2 4 6

L-I P scaling (all 5-6T)

0
I-H, vs L-I fit



I-H threshold, power “window” 
may decrease with density

• Restricted data set• Full data set shows I-mode Restricted data set 
(1 MA, LSN) reduces scatter.
– P(L-I) increases with ne. 

I mode P range and P(I H)

Full data set shows I mode 
power range vs L-I scaling 
is highest at low density.  
BUT I-H transitions are still

6
I-H trans

– I-mode P range, and P(I-H) 
decrease w ne

ne dependence of P/PLI,fit
2.0

BUT I-H transitions are still 
scattered.
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Highest I-mode ‘power window’ so far obtained in 
LSN R B d t d itLSN, Reverse BT, moderate density

Ip = 1.2 MA
Forward B

Ip = 1.1 MA
Reverse B

Prf 
(MW)4

L L LI-mode H I-mode
Forward B Reverse B

Pedestal Grad T

0
200

I-mode power
“window”

(kV/m)

0
ne

(1020 m-3)
2

0
0.6

time (s)
1.0 1.4 0.6

time (s)
1.0 1.4



I-L back-transitions exhibit 

C-Mod shot  1110309026 1 MA Rev B

3
4

P (MW)

modest power hysteresis
• Transitions back to L-mode at
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• Transitions back to L-mode at 
much lower ICRF power than 
L-I transition.
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Note:  Linear W vs P in I-mode
→ no power degradation!



Local conditions at 
transitions to I and H-mode

• Past studies on C-Mod and elsewhere have found local 
conditions at transition thresholds can be a better way to 
characterize thresholds, give more insight into physics.
O C M d d l h d t t (T T• On C-Mod and elsewhere, edge temperature (Te, Ti
and/or grad T) tends to organize L-H transitions with 
favorable drift [eg, Hubbard1998, Groebner 1998 ]

• On C-Mod, Te,95 for usual L-H ~ 100-200 eV, higher 
below “low ne limit”. [Hubbard 1998, Ma 2011]
H d th h ld i f bl d ift ?• How do thresholds in unfavorable drift compare?



Database study finds edge Te may
d ib L I th h ld b t t I Hdescribe L-I threshold, but not I-H.
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• Used parameters from fits to core and edge ECE and TS.
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• Averaged over sawtooth heat pulses, which can be large at high power 
and often trigger transitions.  For full 5-6 T dataset, find 
Te,95 (L-I) ~ 250-400 eV, independent of Ip and ne.

R hl d bl th T f d i t di ith f bl d ift ( b l )– Roughly double the Te,95 found in studies with favourable drift (see below). 

• Does not organize I-H transitions well.



At fixed Ip & shape, I-mode edge 
Te range decreases with ne

• Subset of 1.-1.12 MA LSN 
1000

discharges, narrow shape 
range. 
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• As with power, scatter is much 
reduced; suggests decreasing 
I-mode window with ne.  
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Sawtooth heat pulses affect 
I-mode dynamics, transitions

• Heat pulses can be large with C-Mod shot  1101209029 1.3 MA
6

high power ICRH, especially at 
low q95, and in I-mode due to 
high Te.

• Pulses often trigger L I and I
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• Pulses often trigger L-I and I-
H transitions, and affect WCM 
amplitude and freq.

– Off-axis ICRH can delay H-
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CONCLUSIONS
• Transitions to I-mode and H-mode with unfavorable Bx∇B drift are 

generally higher than and scale quite differently than usual L-H

CONCLUSIONS
generally higher than, and scale quite differently than, usual L H 
transitions with favorable drift.

• L-I thresholds  
– Increase with both plasma current and density.  Regression fit gives p y g g

Ploss (L-I) ~ Ip ne
0.5; single current scan shows ~linear ne dependence.

– Occur at Te,95 ~250-400 eV, independent of current and density.  Possible 
threshold parameter linked to edge temperature or related quantity?
Sawtooth heat pulses play a role in triggering and dynamics– Sawtooth heat pulses play a role in triggering and dynamics

• I-H thresholds
Occur at power as much as 1 8 x L I threshold and scalings– Occur at power as much as 1.8 x L-I threshold and scalings.

– But, highly scattered, in both power and local parameters (eg Te).  Not yet 
clear what determines I vs H-mode regime.

– I-mode power window (and I-H threshold) may depend inversely on ne.p ( ) y p y e

• I-L back transition shows modest hysteresis (ie lower power than L-I
transition).  



Th i iti l l i t d h ti t i t d
FUTURE WORK

The initial analysis presented here motivates new experiments and 
analysis to answer questions raised.  These will include:

• Controlled density scans to clarify scaling of L I and• Controlled density scans to clarify scaling of L-I and 
particularly I-H mode thresholds.  
– Does I-mode “window” really shrink at high density?  How does this 

depend on Ip, Bt, shape?  Can we increase power at low density or via p p p p y
fuelling?

• Intermachine comparisons to identify underlying physics 
i bl i li Pl d i 2012 AUG D3Dvariable, size scaling.    Planned in 2012 on AUG, D3D, 

encouraged on others.
– How do I-mode thresholds and confinement scale with size?   

What determines density range? (n/n collisionality )– What determines density range?  (n/nG, collisionality….)
– Will I-mode be accessible on ITER??

• More precise determination of edge profiles at and during p g p g
transitions, including role of sawtooth heat pulses and relation with 
edge fluctuations.  
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