

An accelerator-based surface diagnostic for plasma-wall interactions science on the Alcator C-Mod tokamak

Zach Hartwig

Harold Barnard, Brandon Sorbom, Pete Stahle, Dennis Whyte, Richard Lanza

Plasma Science and Fusion Center Massachusetts Institute of Technology

Our map for the next twenty minutes ...

I. Prerequisites

Goal: Review magnetic confinement devices

II. Plasma-Wall Interactions (PWI)

Goal: Impart understanding of critical nature of PWI for fusion energy

III. AGNOSTIC: advancing in-situ PWI diagnostics

Goal: Show the first diagnostic that will open up an understanding of PWI

Prerequisite #1: Thanks to all the people who have contributed their efforts to the success of this project

Diagnostic team

- Harold Barnard
- Brandon Sorbom
- Pete Stahle
- Dennis Whyte
- Richard Lanza

Alcator C-Mod team

- Earl Marmar
- Mark Chilenski
- Nathan Howard
- Ian Faust
- Matt Reinke
- Bob Granetz

Alcator C-Mod engineering

- Dave Terry
- Rui Vieira
- Alan Binus
- Henry Savelli
- Gary Dekow
- Jim Irby
- C-Mod Machine Shop
- ...rest of C-Mod staff

Prerequisite #2: Getting to know your magnetic fusion confinement device ...

Hic sunt dracones: a medieval cartographic practice of depicting monsters in place of the unknown

A portion of Carta Marina (Olaus Magnus, c. 1530 A.D.)

Hic sunt plasmae superficies interactionus: a modern fusion science practice of leaving PWI undiagnosed

A portion of Carta Marina (Olaus Magnus, c. 1530 A.D.)

Plasma-boundary coupling results in modifications to core plasma and material surfaces in magnetic fusion devices

Plasma-Wall Interactions (PWI) seeks to understand the coupled system that forms between magnetically confined plasmas and their physical boundary surfaces known as plasma facing components (PFC).

- PFCs are exposed to extremely hostile environments...
 - heat fluxes up to ~10⁹ W/m²
 - charged particle fluxes up to ~10⁵ A/m²
 - neutron fluxes and nuclear activation
- ...resulting in modifications to the PFC surfaces:
 - hydrogenic fuel retention (deuterium, tritium)
 - net erosion and redeposition
 - melting
 - isotope mixing
 - sputtering

Heat and charged particles

Examples from Alcator C-Mod demonstrate the destructive potential of PWI issues

Upper divertor PFC tiles

Midplane limiter PFC tiles

Extrapolating to reactor-scale devices indicates the potential severity of PSI issues for fusion energy

Issue / Parameter	Present Tokamaks	ITER	DEMO
Quiescent energy exhaust GJ / day	~ 10	3,000	60,000
Transient energy exhaust from plasma instabilities $\Delta T \sim MJ / A_{wall}(m^2) / (1 \text{ ms})^{1/2}$	~ 2	15	60
Yearly neutron damage in plasma-facing materials displacements per atom	~ 0	~ 0.5	20
Max. gross material removal rate with 1% erosion yield (mm / operational-year)	< 1	300	3000
Tritium consumption (g / day)	< 0.02	20	1000

Implications

- Unknown affect on core plasma
- Increased cost
- Increased maintenance shut down
- Operational limits
- Shortened device and component lifetimes
- Feasibility of magnetic fusion energy

New *in-situ* diagnostics are required to significantly advance PWI science in magnetic fusion devices

- Ex-situ diagnostics and "benchtop" PWI experiments are critically limited
 - Unable to replicate tokamak-relevant PWI conditions ("benchtop")
 - Limited PFC surfaces available for measurement (IBA)
 - "Archaeological" measurements lack dynamic PWI information (IBA)
- In-situ PWI surface diagnostics are severely limited in deployment and unable to meet all requirements
- The ideal PFC surface diagnostic would provide measurements:
 - in-situ without vacuum break
 - on a shot-to-shot frequency for time resolution and PWI dynamics
 - of large areas of PFC surfaces (poloidally and toroidally resolved)
 - of elemental/isotope discrimination to depths of ~10 microns

AGNOSTIC exploits intra-pulse capabilities of a tokamak and deuteron-induced reactions to investigate PWI

- AGNOSTIC (<u>A</u>ccelerator-based <u>G</u>amma and <u>N</u>eutron <u>O</u>bserving <u>S</u>urface-diagnosting <u>T</u>ool for <u>I</u>n-situ <u>C</u>omponents) derives from two key observations:
 - 1) The tokamak magnetic fields can be used between plasma shots to steer a charged particle beam to PFC surfaces of interest
 - 2) The gammas and neutrons produced by low-energy, deuteron-induced nuclear reactions provide a comprehensive diagnostic tool for PWI

PWI Issue	Nuclear reaction	Induced particle energy (MeV)
Fusion fuel retention	² H(d,n) ³ He ³ H(d,n) ⁴ He	$E_n = 2 - 4 \text{ MeV}$ $E_n = 17 - 19 \text{ MeV}$
Erosion / redeposition	⁶ Li(d,p+g) ⁷ Li ⁸ Be(d,p+g) ⁹ Be	$E_g = 0.478$ $E_g = 0.718$
Wall conditioning	¹¹ B(d,p+g) ¹² B ¹⁶ O(d,p+g) ¹⁷ O	$E_g = 0.953, 1.674$ $E_g = 0.871$
Impurity transport	Accessible Low-Z reactions	E _g <= 5 MeV

(1) Radio Frequency Quadrupole(RFQ) linear accelerator injects0.9 MeV D+ beam into vacuumvessel through a radial port

- (1) Radio Frequency Quadrupole(RFQ) linear accelerator injects0.9 MeV D+ beam into vacuumvessel through a radial port
- (2) Tokamak magnetic fields provide steering via the Lorentz force

- (1) Radio Frequency Quadrupole(RFQ) linear accelerator injects0.9 MeV D+ beam into vacuumvessel through a radial port
- (2) Tokamak magnetic fields provide steering via the Lorentz force:
- (3) D+ induce high Q nuclear reactions with low Z isotopes in PFC surfaces producing ~MeV neutrons and gammas

- (1) Radio Frequency Quadrupole (RFQ) linear accelerator injects 0.9 MeV D+ beam into vacuum vessel through a radial port
- (2) Tokamak magnetic fields provide steering via the Lorentz force:
- (3) D+ induce high Q nuclear reactions with low Z isotopes in PFC surfaces producing ~MeV neutrons and gammas
- (4) In-vessel detection and energy spectroscopy provides a wealth of information on PFC surface composition and conditions

AGNOSTIC was designed to fit amidst the extremely crowded area around C-Mod's horizontal ports

AGNOSTIC was designed to fit amidst the extremely crowded area around C-Mod's horizontal ports

A solid model with cutaways of the proposed installation location for AGNOSTIC on Alcator C-Mod. (Lots of stuff not shown!)

AGNOSTIC consists of the RFQ accelerator, focusing quadrupole beamline, reentrant tube, and particle detectors

An 0.9 MeV deuteron RFQ accelerator has been completely refurbished and upgraded

 ~25 year old prototype RFQ (radiofrequency quadrupole) accelerator from Accsys Inc has been completely refurbished and modernized

- New RF tubes and coax; digital control systems; new vacuum system;
- ~0.9 MeV deuterons, < 2% duty factor,
 ~2 mA peak current, ~50 uA avg current
- Beam spot using permanent focusing quadrupole magnets is ~1 cm at 2 m from RFQ exit

Voltage [1V/div] (Calibration 1V/mA)

Time [10 us/div]

A compact LaBr₃:Ce scintillator coupled to an Si-APD provides high-resolution gamma spectroscopy

- AGNOSTIC particle detection must be performed in an extremely hostile environment
 - High neutron flux ($\sim 10^{13} \text{ m}^{-2} \text{ s}^{-1}$)
 - High magnetic fields (< 0.1 T)
 - Mechanical shock (~200 g)
 - Compact geometry (~cm)
 - High counts rates (<10⁵ / s)

A compact LaBr₃:Ce scintillator coupled to an Si-APD provides high-resolution gamma spectroscopy

- AGNOSTIC particle detection must be performed in an extremely hostile environment
 - High neutron flux ($\sim 10^{13} \text{ m}^{-2} \text{ s}^{-1}$)
 - High magnetic fields (< 0.1 T)
 - Mechanical shock (~200 g)
 - Compact geometry (~cm)
 - High counts rates (<10⁵ / s)

A photo of the LS detector next to a pencil for scale (left) and within its reentrant cartridge (right)

 A 0.9 x 0.9 x 3.5 cm LaBr₃:Ce crystal coupled to a Hamamatsu silicon avalanche photodiode in a ruggedized stainless steel housing was fabricated by Saint-Gobain for AGNOSTIC

A compact LaBr₃:Ce scintillator coupled to an Si-APD provides high-resolution gamma spectroscopy

- AGNOSTIC particle detection must be performed in an extremely hostile environment
 - High neutron flux ($\sim 10^{13} \text{ m}^{-2} \text{ s}^{-1}$)
 - High magnetic fields (< 0.1 T)
 - Mechanical shock (~200 g)
 - Compact geometry (~cm)
 - High counts rates (<10⁵ / s)

A photo of the LS detector next to a pencil for scale (left) and within its reentrant cartridge (right)

- A 0.9 x 0.9 x 3.5 cm LaBr₃:Ce crystal coupled to a Hamamatsu silicon avalanche photodiode in a ruggedized stainless steel housing was fabricated by Saint-Gobain for AGNOSTIC
- Energy resolution typically a factor of 2 to 3 better than Nal(Tl) detector; photopeak statistics excellent despite 30x smaller sensitive volume than Nal(Tl) detector

LS Detector response to 661.7 keV gammas

An EJ301 liquid scintillator with SiPM readout and very fast preamplifier provides high-energy neutron detection

- AGNOSTIC particle detection must be performed in an extremely hostile environment
 - High neutron flux ($\sim 10^{13}$ m⁻² s⁻¹)
 - High magnetic fields (< 0.1 T)
 - Mechanical shock (~200 g)
 - Compact geometry (~cm)
 - High counts rates (<10⁵ / s)
- A 2.5 x 2.5 cm EJ301 liquid organic coupled to an Si-APD was successful; however, no pulse shape discrimination (PSD) was possible
 - Neutrons and gammas indistinguishable

Prototype EJ301-SiAPD scintillator detector with charge-integrating preamplifier

ES detector waveforms

An EJ301 liquid scintillator with SiPM readout and very fast preamplifier provides high-energy neutron detection

- AGNOSTIC particle detection must be performed in an extremely hostile environment
 - High neutron flux ($\sim 10^{13}$ m⁻² s⁻¹)
 - High magnetic fields (< 0.1 T)
 - Mechanical shock (~200 g)
 - Compact geometry (~cm)
 - High counts rates (<10⁵ / s)
- A 2.5 x 2.5 cm EJ301 liquid organic coupled to an Si-APD was successful; however, no pulse shape discrimination (PSD) was possible
 - Neutrons and gammas indistinguishable
- Next generation EJ301 with silicon photo-multiplier and fast preamplifier provides~nanosecond voltage following for PSD
 - Potentially the first detector of its kind
 - Applications in fusion, high energy physics, SNM detection, well logging

Prototype EJ301-SiAPD scintillator detector with charge-integrating preamplifier

ES detector waveforms

Mockup first-wall measurements were conducted with AGNOSTIC in the laboratory

 Experiments to simulate the actual PWI measurements on C-Mod were conducted ex-situ in the laboratory

▶ Beam: ~0.9 MeV Deuterons
 0.1% duty cycle
 50 us bunches
 30 Hz rep rate

- Target: C-Mod Molybdenum PFC
 Tiles from inner wall
- Objective: Validate ability to monitor wall conditions by quantifying boron and oxygen isotopes

Mockup first-wall measurements were conducted with AGNOSTIC in the laboratory

 Experiments to simulate the actual PWI measurements on C-Mod were conducted ex-situ in the laboratory

▶ Beam: ~0.9 MeV Deuterons
 0.1% duty cycle
 50 us bunches
 30 Hz rep rate

- Target: C-Mod Molybdenum PFC
 Tiles from inner wall
- Objective: Validate ability to monitor wall conditions by quantifying boron and oxygen isotopes

AGNOSTIC has successfully identified boron on molybdenum PFC tiles from Alcator C-Mod in the laboratory

Discrete gamma energies → Unique nuclear level spacing → Isotope identification

AGNOSTIC has successfully identified boron on molybdenum PFC tiles from Alcator C-Mod in the laboratory

Discrete gamma energies → Unique nuclear level spacing → Isotope identification

AGNOSTIC has successfully identified boron on molybdenum PFC tiles from Alcator C-Mod in the laboratory

- Ex-situ validation of the proposed diagnostic technique
- Confirmation of AGNOSTIC components working together
- Validation that LS detector can resolve the peaks of interest from "background" peaks

AGNOSTIC was successfully installed on Alcator C-Mod last weekend; first results expected in next few days

AGNOSTIC was successfully installed on Alcator C-Mod last weekend; first results expected in next few days

The future of PWI and magnetic fusion energy?

AGNOSTIC will begin the first in-situ exploration of PWI

The future of PWI and magnetic fusion energy!

- The understanding of plasma-wall interaction (PWI) science is essential to advance magnetic fusion energy and reactor-relevant confinement devices
- AGNOSTIC is a new generation of in-situ ion beam diagnostics capable of exploring the most fundamental issues of PWI, including fusion fuel retention, erosion/redeposition, wall conditioning, and isotope mixing