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Abstract

Plasmas in the Levitated Dipole Experiment will initially be created using electron
cyclotron heating and it is therefore expected that most of the plasma energy will be
stored in the fast electrons (Te > 100 keV). As a consequence of these fast electrons,
substantial x-ray flux is expected. In the initial run campaign we plan to utilize two
x-ray diagnostics. An x-ray pulse height analyzer will measure the energy spectrum
of bremsstrahlung emission at four radially spaced locations. An x-ray camera [12],
on loan from PPPL, will view the intensity of bremsstrahlung emission from a por-
tion of the toroidal cross section of the plasma at sixty fields per second. Since the
rapid toroidal drift of the hot electrons will symmetrize the hot electron component
we expect that an asymmetry in the bremsstrahlung signal will indicate a spatial
asymmetry in the ion population. We therefore expect to use the camera to indi-
cate plasma asymmetries, which might indicate the presence of convective cells. The
design, construction and calibration of these diagnostics will be discussed.

The x-ray pulse height analyzer and x-ray camera are vital to analyzing the first
plasmas generated in LDX. The data from the XPHA will be used to optimize the
ECRH heating scheme. Once we are able to generate stable, high beta plasmas, the
x-ray diagnostics can be used to study interesting transport phenomema.

Thesis Supervisor: Jay Kesner
Title: Senior Scientist
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Chapter 1

Introduction

The x-ray pulse height analyzer (PHA) is a core diagnostic for the Levitated Dipole

Experiment (LDX). Initial experiments in the LDX will study hot electron plasmas

with temperatures on the order of 100 keV. These hot electrons are expected to

produce significant bremsstrahlung radiation in the x-ray spectrum. The PHA will

provide time resolved spectral measurements of the x-ray energy along four chords

in the plasma. When combined with the equilibrium pressure profiles reconstructed

from magnetic field measurements, the hot electron density and temperature may be

determined. The hot electrons carry most of the energy in the plasma, so density and

temperature will tell us how effective we are at coupling energy into the plasma.

LDX has been designed to study high beta, compressively stabilized plasmas in a

dipolar magnetic geometry. The poloidal field is supplied by an internal superconduct-

ing magnet carrying a maximum of 1.5 MA. During levitated operation, the dipole

field lines form closed loops which provide toroidal confinement without toroidal fields

[8]. This magnetic geometry is similar to that of planetary magnetospheres [?].

The LDX is an attractive confinement concept for fusion because it is inherently

capable of steady state operation. In addition, an LDX reactor require advanced

fuels, eliminating the need for expensive materials and breeding technologies. The

development of an LDX reactor would require the development of high field, high

temperature levitating superconducting magnets[10]. To this end, the LDX is the

first fusion experiment to use a high temperature superconducting magnet.
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The purpose of the LDX is to understand the equilibrium, stability and confine-

ment properties for a plasma that is confined in the field of a levitated dipole [?]. This

can be broken down into two main parts: the study of high beta plasmas stabilized

by compressibility, and the study of magnetic shear free systems.

Conventional magnetic confinement devices such as tokamacs rely on the toroidal

field for confinement and the compressibility term is nearly zero. These types of

devices are stabilized by magnetic shear and good curvature. In contrast, LDX has

purely poloidal field lines, no magnetic shear, and a non-zero compressibility. Inter-

change modes are predicted to be stabilized by compressibility as long as the pressure

falls off more slowly than V γ, where V is the flux tube volume, V =
∮ dl

B
, and

γ = 5/3. For a point dipole these conditions are satisfied for P ∝ R−20/3 [5]. The

purely poloidal field has several other advantages. There is no particle drift off of

the flux surfaces so the confinement can be nearly classical. The absence of magnetic

shear is expected to decouple particle and energy confinement. In addition the device

can operate in steady state without current drive.

In two dimensional systems such as LDX, convective cells may form, and transport

can take place via these macroscopic flows[9]. For stable pressure profiles with “good

curvature”, convective cells would transport energy down the pressure profile, whereas

for “bad curvature”, they would transport energy up the pressure profile. If the

pressure profiles are marginally stable with respect to interchange modes and stable

with respect to all other modes, theory predicts that no energy will be transported

by convective cells. If this condition is satisfied, then LDX will be able to operate at

marginal stability without reducing the energy confinement time. LDX is currently

the only fusion type experiment designed to operate at marginal stability.

An x-ray pulse height analyzer (PHA) is a plasma diagnostic that measures the

energy spectrum of bremsstrahlung emission from the plasma. Bremsstrahlung, or

”breaking radiation”, is emitted when a free electron interacts with the electric field

of a charged particle [6]. For initial plasmas in LDX, electron–ion as well as electron–

neutral interactions will contribute to the bremsstrahlung spectrum. X-rays are also

emitted when hot electrons collide with surfaces, such as the vacuum vessel walls

14



or the F-Coil. It is necessary to shield detectors from hard target bremsstrahlung

with careful collimation to obtain electron temperature measurements from the PHA

measurements.

The simplest form of a pulse height analyzer is an x-ray detector that produces a

charge proportional to the energy of the incident x-ray. The charge is then converted

to a voltage by a charge sensitive preamplifier. Each voltage pulse is shaped, filtered,

digitized, and counted. The result is an energy spectrum of x-rays incident on the

detector.

The PHA for LDX views four chords along the midplane of the vacuum vessel,

providing enough spatial resolution for qualitative profile measurements. The diag-

nostic relies on 5x5x5 mm CZT (cadmium zinc telluride) detectors with energy ranges

from 10 keV to 670 keV. Additional measurements can be made at higher energies

using 2x2” NaI (sodium iodide) scintillation detectors which have an energy range of

1 keV to 3 MeV. The CZT detectors were selected for their small size and superior

energy resolution.

Time resolution can be achieved by measuring multiple spectra during the course

of a shot. At maximum energy resolution of 8184 bins, sixty-four spectra can be

stored. The time windows during which each spectra is measured can be varied

individually. Additional spectra can be measured before and after each shot. Time

resolution was not implemented for the first plasma runs, but will be available for

later runs.

For initial plasmas, the output of a sodium iodide detector, positioned to look

directly at the F-Coil, was amplified and digitized. These measurements may provide

some insight into the conditions during which x-rays emitted from the plasma. For

example, when the LDX is operated at a reduced field with a small amount of heating

power, it may take several seconds to produce a significant number of hot electrons.

The temperature of the hot electron population may be extracted from the x-ray

spectra. This, combined with equilibrium pressure profiles reconstructed from mag-

netic measurements, can be used to determine the hot electron density. A qualitative

picture of how the hot electron population is distributed within the plasma and how

15



that distribution evolves over time can be obtained. Understanding the hot electron

population in the plasma is essential to understanding the LDX plasmas.

The goals for the pulse height analyzer are to look at hot electron plasmas with

high beta to get an idea of the pressure profile kinetically. We would like qualita-

tive measurements of the kinetic pressure profile to provide evidence for whether a

particular pressure profile is marginally stable or not. We may be able to set some

benchmarks for how plasmas behave in different magnetic field configurations.

We would also like to investigate the x-ray spectrum to determine the maximum

energy, and number of x-rays emitted. This will indicate how efficient the hot electron

production is, whether there are preferential hot electron losses at some energies and

the upper limit of the electron energies.

The purpose of this thesis is to design, calibrate, and test the x-ray diagnostics

for the LDX and to use measurements from these diagnostics to analyze the ECRH

heating of first plasmas.

Chapter two will highlight important details of the Levitated Dipole experiment,

including the magnetic geometry, initial diagnostic set, and typical plasma parame-

ters. The PHA detectors were calibrated using an Am-241 source which has a cal-

ibration line in the range of the expected x-ray emission from LDX plasmas. The

details of the x-ray pulse height analyzer including the choice of detectors, collima-

tion, the data acquisition system and calibration are described in chapter three. The

last chapter will present the results of initial experiments in LDX.

16



Chapter 2

The Levitated Dipole Experiment

The Levitated Dipole Experiment (LDX) will study plasma confinement in dipolar

magnetic fields. The idea of using a dipole field for a fusion reactor was developed

by Akira Hasegawa after the Voyager II spacecraft detected plasma trapped in the

magnetic field of Jupiter’s magnetosphere [?]. In nature, dipole magnetic fields have

been observed to confine plasmas around neutron stars and middle magnetospheres

of magnetized planets such as Jupiter and Earth [8].

Currently, the collisionless terrella experiment (CTX) is investigating supported

dipoles [?]. Mini–RT in Japan is studying cold, single species plasmas with a 6 cm

diameter levitated dipole. The LDX, in contrast, has a 68 cm diameter floating coil,

and will initially study hot electron (neutral) plasmas.

This chapter will present a brief overview of the experiment, including the mag-

netic geometry, heating and diagnostic set.

2.1 Magnetic geometry

The magnetic geometry of LDX is achieved using three superconducting magnets.

The dipole magnetic field is provided by an internal floating coil (F-Coil) carrying

1.5 MA. During floating operation, the 550 kg F-Coil will be continuously levitated

from above using the levitation coil (or L-Coil). In supported mode, the L-Coil may

also be used to provide some plasma shaping. The F-Coil is inductively charged by a
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4 MA charging coil (C-Coil). Fig. 2-1 shows a cutaway view of LDX with the three

magnets and the field lines for levitated mode with the L-Coil at full field. Additional

plasma shaping can be achieved by imposing a vertical magnetic field with two copper

Helmholtz coils.

Initial plasmas in LDX will use a supported dipole configuration. The F-Coil

will be energized to 40% of the full current, 0.6 MA. Equilibrium field lines without

shaping are show in figure 2-2.

2.2 Plasmas

LDX plasmas will be hydrogenic. Initial experiments were performed using deuterium

gas as fuel. Hydrogen, helium and argon are also available for experiments on mass

or charge scalings. Argon plasmas can be used to enhance x-ray signals because

bremsstrahlung emission is proportional to Z2 and argon has a much higher Z than

hydrogen or helium.

Initial plasmas will be created using multifrequency electron cyclotron resonance

heating (ECRH) at 2.45 GHz and 6.5 GHz. Each source produces 3 kW of power. 10

GHz will be incorporated in future run campaigns. The particle confinement time is

expected to be good, so electrons heated by ECRH should reach high temperatures,

on the order of 100 keV. In order to reach these temperatures using the configuration

for first plasmas, shots on the order of ten seconds may be required.

The resonance zones for initial plasma experiments without shaping are shown in

Fig. 2-2. The outermost line of each zone, 140 Gauss and 370 Gauss for 2.45 GHz

and 6.5 GHz, are the cold plasma resonances for each frequency. As the electrons

become relativistic, their lab frame mass increases and the resonance shifts inward.

The inner edge of the resonance zone pictured is the second harmonic for 200 keV

electrons. The red line marks the edge of the vacuum vessel. The F-Coil is pictured

in the center in white.

There are two ’knobs’ on the initial experiments. Varying the power of the ECRH

sources will adjust the plasma profile. The relative power of the two sources can also

18



Figure 1: Cross-section view (left) of LDX experiment showing the basic coil configuration and
plasma equilibrium resulting from ring levitation. Magnetic field lines (solid) and |B| contours
(dotted) are shown. Photograph of experimental cell (right) showing the vacuum vessel and
launcher system.

2 Synopsis of Research Plan

The LDX research plan is organized along two interconnected pathways.
First, the plan is organized into three scientific tasks:

1. Experiments to test and understand compressibility stabilization.

2. Experiments to measure and control particle circulation and adiabatic heating.

3. Experiments to measure and understand dipole plasma confinement at high beta.

Each of these physics tasks involve active experiments where plasma control tools (e.g. shaping
coils, multiple frequency electron cyclotron heating, and particle sources) are used to modify
plasma conditions and where plasma diagnostics are used to measure local and global parameters.
These physics tasks are strongly coupled to our theory and modeling efforts.

Second, our research plan is separated into three carefully planned facility stages that allow
the safe and reliable operation of the LDX superconducting magnets and that allow the coordi-

3

Figure 2-1: A cross section of the LDX experiment is shown with the basic coil
configuration. Magnetic field lines (solid) and |B| contours (dotted) are drawn for
the plasma equilibrium resulting for levitated operation.
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Figure 2-2: Typical magnetic geometry for first plasmas.
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be varied..

The second control is the gas pressure. Initial experiments included a gas puff

scan, during which deuterium gas was puffed into the vessel over times ranging from

2 to 100 ms.

An additional knob will be used in the future. The shape of the plasma can

be manipulated by applying a vertical magnetic field via the Hemholtz coils or by

energizing the L-Coil with a small amount of current. Plasmas can be shaped to a

limited mode or a diverted mode.

The initial plasmas discussed in this thesis will use a supported dipole configura-

tion with no shaping. The F-Coil current is 40% of the design current, approximately

0.6 MA so the maximum poloidal magnetic field is 0.022 Tesla. Data analysis is on-

going. Plasma density is predicted to be a maximum of 1011cm−3. Edge densities

are expected to be in the range of 1010 cm−3. Hot electron electrons were observed

in the range of 20 keV to 150 keV. The bulk ion and electron populations will have

temperatures should be in the low eV range.

An estimate of plasma parameters for plasmas created using the F-Coil at full

field with no shaping, limited mode, and diverted mode are given in Table 2.1 for

four configurations. These parameters are for plasmas in levitated mode. Plasma

densities are expected to be in the range of 1019m−3.

Table 2.1: Plasma equilibria parameters. (A) diverted, no shaping, (B) diverted,
shaped for maximum beta, (C) diverted, shaped for minimum beta, (D) limited
plasma.

A B C D
S-Coil Currents; Is1, Is2 (kA) 0,0 1,12 50,50 3,12
Plasma Volume (m3) 14 27 1.7 24
SOL Pressure (Pa) 0.25 0.25 0.25 0.1
Max Pressure (Pa) 1.35 1530 45 472
Plasma Current(kA) 3.2 16.4 0.39 5.78
Stored Energy (J) 315 1450 27 516
R(Pmax) (m) 0.76 0.76 0.77 0.79
B(Pmax) (T) 0.088 0.088 0.088 0.088
β(Pmax) 0.08 0.55 0.015 0.15

21



Initial Plasma Diagnostic Set

! X-rays diagnostics

" PHA hot electron energy distribution / profile

" Hard X-Ray Camera

! D! camera

! Edge probes
" Edge plasma density and temperature

" Fluctuations

Top Ports N

E

S

W

NW NE

SESW

Horizontal Ports

N NE E SE S SW W NW

Bottom Ports N

S

W

NW NE

SESW

Magnetics

LEGEND

Interferometer

X-Ray PHA

X-Ray Camera

Probes

ECRH

Visible Camera

Vacuum Pumping

GDC

Levitation Control

! Magnetics (flux loops, hall probes) 

" Plasma equilibrium shape

" Mirnov coils for magnetic fluctuations

! Interferometer

" Density profile and macroscopic density

fluctuations

Figure 2-3: Placement of initial diagnostic set on LDX.

2.3 Diagnostic set

In addition to the x-ray measurements, the initial diagnostic set will include mea-

surements of the pressure profile, plasma core density, edge density and hot electron

temperature. Two black and white CCD cameras will give side and top views of

the visible radiation and the launcher/catcher and positioning of the F-Coil. A dig-

ital video camera viewed from the side of the vessel. The locations of the initial

diagnostics on the vacuum vessel are shown in Fig. 2-3.

• External magnetic measurements include 18 poloidal field coils spaced toroidally

around the vacuum vessel and 6 flux loops. These will be used to reconstruct the

MHD equilibrium pressure profiles. These measurements will have a temporal
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resolution of 200 kHz.

• Internal magnetics will look at magnetic fluctuations potentially caused by inter-

change modes. One internal Mirnov coil will measure the magnetic fluctuations

of first plasmas. This measurement also has a temporal resolution of 200 kHz.

Seven additional Mirnov coils and two additional flux loops will be installed at

a later date.

• A one-channel heterodyne interferometer operating at a frequency of 60 GHz

will measure the core plasma density. Additional channels will be installed

after the prototype is tested. This measurement was not digitized for initial

experiments, but estimates based on observation of fringes on the oscilloscope

are available.

• A four-channel x-ray pulse height analyzer measures the x-ray emission from the

plasma during the shot. A single sodium iodide detector viewing through the

center of the vessel provides a time resolved measurement of the x-ray intensity

at 200 kHz.

• Three fixed position Langmuir probes measure edge density fluctuations.

• A monochromatic visible light camera is positioned to view through a side

window. A second camera views the vessel from above. Both cameras output

a standard video signal (30 frames per second). The cameras will be used

for qualitative observation of the launcher/catcher operation and the plasma

shapes. A color digital video camera views from the side.
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Chapter 3

Experimental Apparatus - PHA

description

For LDX plasmas, bremsstrahlung emission is expected from interactions between

free electrons and free ions as well as interactions between free electrons and neutral

particles. Bremsstrahlung is also emitted when hot electrons collide with objects in

the vacuum vessel, namely the F-Coil, the F-Coil supports and the chamber walls.

The energy spectrum of this x-ray emission is measured with a four channel pulse

height analyzer. The design, installation and calibration of this diagnostic is described

in the following chapter.

3.1 Bremsstrahlung radiation

I want to make fig. ?? using the eq. code of first plasma runs.

Figure 3-1: Predicted pressure profile generated from equilibrium reconstruction code
and the corresponding predicted classical bremsstrahlung emission profile for various
densities.
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3.2 PHA design requirements

The PHA system for LDX was designed based on predicted hot electron temperatures

on the order of 100 keV. Predicted count rates for an uncollimated system are 108

counts per second. Ideally, the temporal resolution should be on the order of the

energy confinement time, but it must be long enough that a sufficient number of

counts are collected for statistical analysis. Detectors and preamplifiers must be able

to operate in 500 Gauss magnetic field.

3.3 PHA Layout

The simplest form of a pulse height analyzer is an x-ray detector that puts out a

charge proportional to the energy of the incident x-ray. The charge is then converted

to a voltage by a charge sensitive preamplifier. Each voltage pulse is then shaped,

filtered, digitized and then counted. A block diagram of the pulse height analyzer

designed for LDX is show in Fig.3-2. Each portion of the PHA will be discussed.

PHA Layout

pc

XIA DXP-2X Camac Card

pulse

filter
shaping

amp

Detector + RC feedback

preamplifier assemblies

ADC

• 4 Channels

• Count rates of 500 kHz per channel are expected

• CZT 5x5x5mm detectors view energy range of 10 keV-720 keV

• NaI 2x2x2” detector views an energy range of 1 keV-3 MeV

Figure 3-2: Black box diagram of the pulse height analyzer

3.3.1 Detectors/preamplifiers

Typical detector materials include silicon, sodium iodide (NaI), mercuric iodide, cad-

mium telluride (CdT), cadmium zinc telluride (CZT). The type of detector chosen
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for each application depends on a number of considerations including the resolution,

energy range, maximum count rate, and cost. Better resolution often can be obtained

by cooling crystal detectors. Some detectors such as silicon detectors must be cooled

to liquid nitrogen temperatures.

There are two types of charge sensitive preamplifiers, reset preamplifiers and RC

feedback preamplifiers. In reset preamplifiers, the voltage is reset to zero between

pulses. They are more difficult to build than feedback preamplifiers and are therefore

more costly. During the reset there is a short ’dead time’ during which no data can be

collected. This type of preamplifier tends to be used with detectors for experiments

that view soft x-rays and require high accuracy. An RC feedback preamplifiers is

an RC circuit so that the voltage decays exponentially with time constant τ = RC.

Features are added to reduce noise and to correct for undershooting. RC feedback

preamplifiers are inexpensive, but are noisier than reset preamplifiers.

Off the shelf detector and preamplifier units are available and adequate for our

purposes. These units are fairly inexpensive and don’t require time consuming de-

velopment. Two types of detectors will be available for experiments. There are four

CZT 5x5x5 mm crystal SPEAR detectors from eV Products. There is one NaI detec-

tor, model IA–1378 from Bicron with a 2x2” crystal. The NaI detector has a larger

energy range than the CZT detectors, 5 keV – 3 MeV compared to 10 keV – 670 keV

whereas the CZT detector has better resolution than the NaI detector, 4% full width

half max at 122 keV versus 7% full width half max. The CZT detectors are also much

smaller in size than the NaI detectors.

The digitizer has four channels so only four of the five detectors may be used

simultaneously for pulse height analysis. Most of the emission is expected to be

in the range of the CZT detectors, 10 keV – 670 keV [2]. Experiments from the

collisionless terella experiment (CTX) at Columbia University show x-ray emission at

energies as high as several MeV[1] so the NaI detector must be able to measure the

overall x-ray emission from the LDX experiment so that we can be make sure we are

not ignoring a high energy tail.

The Spear CZT detector can operate in magnetic fields up to 5 Tesla. The window
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is 0.001” aluminum and 0.005” stainless steel, and the detector has a gold shield. The

detector must be shielded from ultraviolet radiation. The NaI detector has µ metal

shield and an aluminum window. Both detectors are shielded from visible light.

The smaller surface area of the CZT detector is not expected to be a problem.

With 25 mm2 area, 8x106 cps are expected with no collimation. Although, the CZT

is detector is much smaller than NaI detector, it is 50% more dense than NaI so has

better count rate per unit volume.

The detector unit was chosen based on the preamplifier qualities. It was necessary

to choose a preamplifier with a fast rise time because we expect a high count rate.

The predicted count rate, gain and fall time are used to determine the voltage range

of the output of the detector. The output must fall within the range of the digitizer,

0–10 V for the DXP4C2X. It is best to use as much of this range as possible without

going out of range to increase the signal to noise ratio.

Equation 3.1 relates the rate of change in voltage in time to the preamplifier

characteristics assuming a constant count rate.

dV

dt
= G ∗ N

s
∗ Eave −

V

RC
(3.1)

The first term is increase in voltage due to an incident x-ray. The second term is

the exponential decay of the voltage due to the RC time constant. This leads to a

maximum voltage of ,

Vmax = G ∗ N

s
∗ Eave ∗RC. (3.2)

The maximum voltage rise for the CZT detector is 4.0 V, due to a count rate of

500 kcps (the maximum count rate that can be processed by the digitizer), an average

x-ray energy of 100 keV, detector gain of 0.11 mV/keV, and a fall time of 725 µs.

The built in RC feedback preamplifier in the spear detector can handle count rates

up to 500 kilo-counts per second. The same limit exists for the pulse height analysis

electronics so this value was used to determine the maximum output voltage. 4.0 V

is within the accepted range of the DXP4C2X. The DC offset of the Spear detector is

less than 100 mV so this will not affect the result significantly. The NaI detector has
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Table 3.1: Comparison of the characteristics of the Bicron 13xx NaI detector to the
eV Products SPEAR CZT detector.

Parameter NaI CZT
Type RC feedback RC feedback
Energy Range 5 keV - 3 MeV 10 keV - 670 keV
Resolution 7% FWHM ? 4% FWHM 122 keV
Output gain 0.6 mV/keV 0.11 mV/keV
Rise Time 0.2 µs 0.035 µs
Decay time 50 µs 725 µs
Noise Equiv. Charge 160 e− @ Cin = 6pF 160 e− for Ce source
Ave Step Size 60 mV 11 mV
Assembly dimensions 2 ” x 9” 12 mm x 89 mm

a gain of 0.6 mV/keV and a decay time of 50µs so the maximum voltage assuming

500 kcps is 1.5 V.

The detector and preamplifier properties are compared in Table 3.1. The gain of

the preamplifier is given in millivolts per kiloelectron volts indicating the height of

the voltage pulse is proportional to the energy of the incident x-ray. The rise time

is the time it takes the voltage to spike when an x-ray hits. The fall time or decay

time is the time it takes the voltage to drop to 1
e
Vpeak. The noise equivalent charge

is the charge in silicon of noise. The average step size, voltage increase as a result of

an incident x-ray, has also been computed in millivolts.

3.3.2 Data acquisition and electronics

Traditionally, the shaping, filtering and counting of pulse is done with analog elec-

tronics. A shaping amplifier takes the preamplified pulse and shapes it into a gaussian

peak, where the height of the gaussian is proportional to the energy of the incident

x-ray and the width of the gaussian is related to the rise time of the preamplifier.

Sometimes peaks pile up if incident x-rays hit the detector too quickly. Some pile up

can be reduced by trying to fit a double gaussian to the pulse if a regular gaussian

does not produce a good fit.

Analog systems are large and costly. We’ve chosen instead to use a multichannel
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3. DXP  Structure and Description of Operation:

3.1. Organizational Overview:

The DXP channel architecture is shown in Figure 4.1, showing the three major operating blocks in the

DXP: the Analog Signal Conditioner (ASC), Digital Filter, Peak Detector, and Pileup Inspector (FiPPI), and

Digital Signal Processor (DSP).  Signal digitization occurs in the Analog-to-Digital converter (ADC), which lies

between the ASC and the FiPPI.  In the DXP-2X, the ADC is a 12 bit, 40 MSA device, which is currently being

used as a very linear 10-bit, 40 MHz ADC.  The functions of the major blocks are summarized below.

G a i n  D A C

S l o p e  D A C

T r a c k i n g  D A C

T D A C P u l s e

L o w

P a s s

F i l t e r

D a t a

F a s t

S l o w

G o o d

Data

Digi ta l  Signal

Processor

( D S P )

P e a k  M e a s u r e ,

M C A B i n n i n g  &

A S C  C o n t r o l

In te r face  to

C o n t r o l  C o m p u t e r

+
-

A D C

Ana log  S igna l

Condi t ioner

(ASC)

V a r i a b l e

G a i n

B u f f e r

IN

Digital Fi l ter, Pulse

Detector, & Pile-up Inspector

(FiPPI)

R e s e t

S y s t e m D w g

9 6 0 9 2 4

S a w t o o t h

F u n c t i o n

G e n e r a t o r

Figure 3.1:  Block diagram of the DXP channel architecture, showing the major functional sections.

3.2. The Analog Signal Conditioner (ASC):

The ASC has two major functions: to reduce the dynamic range of the input signal so that it can be

adequately digitized by a 10 bit converter and to reduce the bandwidth of the resultant signal to meet the

Nyquist criterion for the following ADC.  This criterion is that there should be no frequency component in the

signal which exceeds half of the sampling frequency.  Frequencies above this value are aliased into the

digitized signal at lower frequencies where they are indistinguishable from original components at those

frequencies.  In particular, high frequency noise would appear as excess low frequency noise, spoiling the

spectrometer’s energy resolution.  The DXP therefore has a 4 pole Butterworth filter with a cutoff frequency of

about 10 MHz.

The dynamic range of the preamplifier output signal is reduced to allow the use of a 10 bit ADC,

which greatly lowers the cost of the DXP.  This need arises from two competing ADC requirements: speed

and resolution.  Speed is required to allow good pulse pileup detection, as described in §2.5.  For high count

rates, pulse pair resolution less than 200 ns is desirable, which implies a sampling rate of 10 MSA or more.

The DXP uses a 40 MSA ADC.  On the other hand, in order to reduce the noise! in measuring Vx (see Fig.

2.1), experience shows that! must be at least 4 times the ADC’s single bit resolution "V1.  This effectively sets

the gain of the amplifier stages preceding the ADC.  Then, if the preamplifier’s full scale voltage range is

Vmax, it must digitize to N bits, where N is given by:

Figure 3-3: Block diagram of the function the XIA Digital X-Ray Processor card.
Reproduced with permission from XIA.[13]

analyzer card, the Digital X-Ray Processor, DXP4C2X from X-Ray Instrumentation

Associates (XIA), which runs on the CAMAC standard. The preamplifier signal is

conditioned in an analog signal conditioner, then digitized. The digital signal is then

shaped, filtered and counted. The energy spectrum is read out from the DXP4C2X

to the computer.

Digital pulse height analysis has several advantages. The input pulse is already

digitized when it reached the filters, so filtering and binning can be done in during

the time of the pulse, thus reducing dead time and allowing for higher count rates.

In addition, digital filters have a sharp termination which increases the throughput

of the system, allowing for measurement of higher count rates.

3.3.3 DXP4C2X Multichannel Analyzer Camac Card

Rather than digitizing the preamplifier output directly, the DXP2X digitizes the

difference between a known sawtooth function. This signal can then be digitized

using a 10 bit digitizer. The signal then passes through a low pass filter to the analog
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to digital converter. This unit is known as the analog signal conditioner (ASC). The

sawtooth function can be adjusted while the system is running in the event that the

input goes out range of the ASC.

The DXP2X uses two fixed length, trapezoidal filters to discriminate pulses, a fast

filter and a slow filter. The voltage increase output from the preamplifier due to an

x-ray incident on the detector is determined by taking the difference of the average

voltage just after the pulse and the average voltage just after the pulse, as defined in

Eq. filter

LVx,k = −
k−L−G∑

i=k−2L−G+1

vi +
k∑

i+k−L+1

vi (3.3)

Here, vi is the voltage digitized at point i. L is the length time over which data is

average before the pulse. Data is again averaged over a length L after the pulse. G

is the gap, the rise time of the pulse. The filter lengths are set by the user.

Table ?? shows the filter characteristics used for initial plasma experiments. The

filter parameters are input to the DXP2X in either clock units, 25 µseconds for a 40

MHz clock, or decimated clock units, 2DEC ∗ CLOCKSPEED. The decimation can

be 0,2,4,or 6 and is determined by the DXP4C2X based on the peaking time. The

current LDX configuration uses a decimation of 2. The slow filters are measured in

decimated clock units, while the fast filters are measured in clock units. SLOWLEN

and FASTLEN are the lengths of the slow and fast trapezoidal filters, respectively.

Similarly, SLOWGAP and FASTGAP are the flattop times of the trapezoidal filters.

The total time of the filter is 2 ∗ LEN + GAP . PEAKINT is the peak interval

time and is typically set to SLOWLEN + SLOWGAP. PEAKSAM is the time at

which the pulse height is sampled. This parameter can vary from SLOWLEN to

PEAKINT-1. This parameter should be set such that the maximum count rate is

achieved. A scan of the parameter using the LDX setup with CZT detectors found

that value of PEAKINT - 4 yielded the maximum count rates, but there was very

little difference in the count rates when values from PEAKINT-3 to PEAKINT-5 were

used. THRESHOLD is the threshold for the fast filter trigger. Pulses smaller than

the threshold are not measured.
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Table 3.2: fippi

Filter Parameter Value Time
SLOWLEN 12 1.2 µs
SLOWGAP 6 600 ns
FASTLEN 5 125 ns
FASTGAP 1 25 ns
PEAKINT 18 1.8 µs
PEAKSAM 13 1.3 µs
MINWIDTH 2 200 ns
MAXWIDTH 20 2 µs
THRESHOLD 64 15 keV

To ensure that the filters have been set properly and to measure the noise in the

system, the DXP2X periodically measured the voltage when there are no events to

process. This set of measurements is the baseline. If the filters are set properly, the

baseline should be gaussian distributed with a standard deviation that reflects the

noise in the system.

There is electronic noise in the system introduced by fluctuations in the power

supplies, capacitance in the cabling and frequency sources in the surrounding area.

The standard deviation of this electronic noise, σe, is typically less than 0.5mV in

the LDX system. The fano noise is a property of the leakage current in the detector.

For CZT detectors, the noise equivalent charge in silicon is 160 electrons. The pair

creation energy in silicon is 3.63eV which contributes approximately 0.063mV when

adjusted for the gain of the detector. If the mean position of the baseline is not zero,

the the height of the input pulses are scaled using that as the zero. This introduces

some additional noise into the system as shown in Eq.3.4.

σt =
(
σ2

f + (1 + 1/64)σ2
e

)
[13] (3.4)

Additional statistics are acquired for each run. These include the realtime, which

is the total time that passed during the run. The livetime is the time during which

the DXP2X was processing events, rather than performing maintenance operations
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such as measuring statistics and the baseline or readjusting the ASC parameters. The

rate of counts into the filters and rate of counts that meet the pile up criteria and

are counted. The total number of counts in the run and the number of times the fast

filter was triggered are also stored.

The DXP-4C2X has two options for collecting time resolved data. In list mode,

the DXP2X records the time of a pulse and the height of the pulse. This information is

stored on the card until the run is stopped or the memory is full. This configuration is

limited by the total number of photons that can be collected each shot. Each channel

has 1 MByte of onboard memory so 256k events can be stored. Livetime statistics

are recorded for the entire list.

The second configuration is to take a sequence of spectra in time, multiMCA mode.

Livetime statistics are recorded for each spectra independently so a more accurate

measurement is obtained with this method than with list mode for applications where

the x-ray signals very significantly with time. The time windows do not have to be

of equal length.

Again, the number and size of the spectra are limited by the memory. We would

like to have enough counts in each spectra for good statistics and enough spectra

to see the time evolution of the signal on the timescale of the ECRH heating. We

would also like to have the maximum number of bins in each spectra to provide the

best energy resolution. This is important because x-ray emission is expected in the

range from several keV to several MeV and each bin is the same size. The maximum

number of bins is 8192. We chose to use 64 spectra of 8184 bins each. The length of

the spectra is determined by an external gate signal applied from a Jorway 221 card.

The DXP2X can operate with count rates up to 500 kcps. At the maximum rate,

each bin would contain 7812 counts.

To take advantage of this multi-MCA mode, a firmware upgrade was required for

the DXP4C2X. XIA developed and tested this firmware. The LDX will be the first

to put this firmware to use. This portion of the system was not operational at the

time of first plasma experiments.
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3.3.4 DXP4C2X control software and driver

The benefit of using a multichannel analyzer card is that there is no need for costly

analog electronics. All of the pulse height analysis is done on the card or in software.

The software is provided by XIA. Unfortunately, the software provided does not

support using a jorway 411s camac controller.

Two software packages are available from XIA to control the DXP2X. Mesa2X

is a LabView program which allows the user to record and view spectra, baselines

and statistics. A digital oscilloscope mode is available that shows the voltage trace

of the preamplifier output and the outputs of the fast and slow filters. This program

also includes an auto-calibration feature that calibrates the detectors to a single line

source. Handel is a set of C libraries that provides the user with more flexibility than

Mesa2X, but is not as automated.

Mesa2X was used for testing and calibration, while the Handel libraries were used

for experimental runs. Both programs required the development of a driver to be

used with the LDX CAMAC hardware. The LDX is using a CAMAC 411s controller

which interfaces between the computer and the CAMAC crate controller. MDSPlus

already includes a driver for the Camac 411s controller.

An interface was written between the two programs from XIA and MdsPlus, the

data acquisition software used for the experiment. The interface takes a command

from Mesa2x and calls an MDSPlus command on a user specified server from the

remcam library which then executes the command using the built in driver. The

camac controller is physically connected to the server which does not need to be the

same computer that is running the Mesa2x software. The interface supports both

VMS and Linux operating systems as the MDSPlus server. The driver source code is

included in appendix A.

Using the Handel and MdsPlus libraries, additional programs were to control the

initialization, triggering, and storage of data from the DXP4C2X into the MdsPlus

tree. Programs were written for both single spectrum and time resolved mode. The

source code for the single spectrum mode of operation is available in appendix B.
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3.3.5 Views and collimation

The chords that the PHA will view were chosen such that the entire midplane of

the plasma would be sampled. The chords were chosen to be equidistant in angle,

rather than clustered where the pressure peak is expected, because we would like to

investigate how varying the heating affects the pressure peak. We would like to have

the flexibility to diagnose plasmas that do not behave as expected. Fig. 3-4 illustrates

the detector views in the LDX vacuum vessel.

A second Be window views the center of the vacuum vessel. A fifth detector can

view through this window if alternate signal digitization is used. The NaI detector

was placed on this window for first plasma experiments. This channel provide an

measurement of the intensity of x-ray emission from the plasma. This number can

then be used to classify plasmas.

The collimator has been designed for four CZT detector assemblies with 12 mm

diameter. The collimator features an adjustable viewing angle and a replaceable

pinhole. The entire assembly was designed to be flexible in the amount of collimation

provided so that the PHA could easily adapt to a wide variety of plasma conditions.

In the event that the bremsstrahlung emission is weaker than expected the collimation

angle can be increased to allow for more signal. The design angle of four degrees was

selected so that a full view of the plasma midplane could be obtained. The collimator

is made of lead. The shortest thickness of lead an unwanted photon must pass through

to reach a detector is 1 inch.

For first plasma operations, a pinhole was not used because the x-ray flux was

expected to be low in comparison to the values of x-ray flux predicted for levitated

operation. The aperture is a single slit, as pictured in Fig. 3-6. The étendue, G of

the optical system is defined as

G = AΩs

, where A is the area of the detector and Ωs is the solid angle of the of the collimating

optics. When several optics are coupled together, the étendue is determined from the

component with the smallest value. When a pinhole is added to the PHA, its size
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Figure 3-4: The chordal views of the Bremsstrahlung signal are shown overlayed on
a cross-section of the LDX vacuum chamber. The floating coil is shown to scale in
the center. An additional sodium iodide detector views directly across the vacuum
vessel. The pressure peak is expected to lie close to the outer edge of the floating coil.
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Collimator

• CZT collimator is designed for

an adjustable view angle from 4

degrees to 45°.

• NaI collimator is a 4 degree

view angle pinhole.

• Only 4 detectors may be used at

a time.  Detectors in use will be

determined by switching cables.

Figure 3-5: A schematic of the collimation device is shown on the left. A photograph
is shown on the right.
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Figure 3-6: The collimation setup for first plasmas. Each CZT detector
was placed in a collimation hole. Adjusting the position of the detector
changes the collimation angle.

will determine the étendue of the system. For the experiments described here, the

entrance hole to the collimator defines the étendue.

The detectors are oriented in the lead brick at ±5◦ and ±15◦. The collimator is

symmetric about the center axis so we only need to calculate the optical properties

for the two angles. The distance between the collimator opening and the detector is

adjustable so it is necessary to solve for étendue in terms of this distance, d. The

entrance hole is at a slight angle. This affects the viewing angle by about 0.1◦ for

the distances between the detector and opening used in the experiments so we will

neglect it for this calculation. The solid angle is

Ωs =
∫∫

S
sin φ, dθ, dφ = 1− cos φmax

for cones. Let R be the radius of the collimator opening and r be the radius of the

detector, then φmax = arctan(R−r
d

). So we can write

G = A(1− d√
d2 + (R− r)2

)
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. For small angles this simplifies to

G ' Aπ
R2 − r2

d2

The detector area is 5x5mm so A = 25mm2. The collimator opening is 12.25 mm

in diameter and a typical distance d used in the first experiments is 58 mm for a 15◦

angle. These values lead to a value of 0.73mm2steradians for étendue.

3.4 Calibrations

The detectors were calibrated using an Am-241 source. The calibration line for this

source is 59.5412 keV[?]. The activity of the the source is such that count rates of

106 counts per second can be acheived. This is sufficient for testing pulse pileup

characteristics. This line is in the low range of the LDX bremsstrahlung emission.

Table 3.3: CZT detector gains in mV/keV calibrated using and iterated gaussian fit
to the 59.5412 keV line of Am-241. Zero is measured as the offset of the baseline
measurement.

Detector Serial # DXP4C2X Channel Detector Gain
B1241 0 0.106486
B1242 1 0.102311
B1243 2 0.107559
B1244 3 0.103193

The detectors are calibrated using an iterated gaussian fit to the peak that is built

in to the Mesa2X software. The time duration of each iteration is determined such

that the height of the calibration peak is at least 1000 counts. Five iterations are

used. The zero is set automatically in the software using the mean position of the

baseline measurement.

The calibrated detector gain, baseline mean, baseline standard deviation for each

channel are reported in Table 3.3. A typical Am-241 spectrum is as measured from

one of the CZT detectors is shown in Fig. 3-7. The variation in the baseline mean is

shown in Fig. ??.
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Figure 3-7: A typical Am-241 spectrum taken with a CZT spear detector using a
threshold of 7 keV.
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Chapter 4

Results from LDX

First plasma experiments on LDX were conducted Friday, August 13, 2004. These

experiments utilized two frequencies of RF heating, 2.45 GHz and 6.5 GHz. Each

source contributes 3 kW of power. RF power was not varied for these experiments.

The heating times were varied from 4 s to 8 s. An RF only shot with the 2.45

GHz produced no plasma, suggesting that this source either wasn’t firing or wasn’t

coupling energy into the plasma.

The base vacuum was in the low 10−7 Torr scale. A gas scan was conducted by

puffing in deuterium gas for varied amounts of time.
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Chapter 5

Conclusions
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Handel/Mesa2X Driver Source Code

/*

* mds_camacdll.c

* 05/05/2004 Jennifer Ellsworth

*

* Revised version of machine_dependent_mds.c (created by Darren Garnier), a

* driver for the XerXes library on which handel library is based.

*

* Uses function definitions from camacdll.c created by Ed Oltman.

*

* MdsPlus functions are taken from the MdsPlus remcam library.

* http://www.mdsplus.org

*

* Interface between handel library and MDSPlus Camac 411s driver. Camac

* routines are called using MdsValue("...") commands which call MDSPlus

* library functions. Currently set up to use the MdsIpShr library by setting

* macro EXCLUDE_MDS_LIB. Otherwise, MdsLib is called. Currently, code only

* works with MdsIpShr library.

*

* DXP4C2X module is addressed through a server and a string. The server

* servername: or local is the MDSPlus server to which the Camac

* controller is physically connected and the string is the logical name

* of the DXP4C2X module in the Camac crate.

*

* Driver has been tested using VMS and Linux systems as MdsPlus server. VMS

* servers use a different library for camac commands. The driver will

* automatically determine if the server is VMS or Linux and use the correct

* command.

*

* MdsPlus specific configurations are stored in file INIFILE defined by
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* macro in mds_camac.h

*

* set Macro MESA2X to use with MESA2X program on windows or unset to use

* with handel library.

*

***********************************************************************/

/* Settings for this build */

/* #define DEBUG */

/* use this to override mode setting - for debugging */

/* #define FORCE_MODE_16BIT */

/* #define MESA2X 1 */ /* else assume handel is being used */

/*#ifdef MESA2X*/

/* This should get set in the Makefile for *nix systems */

#define EXCLUDE_MDSLIB

/*#endif*/

#include <stdio.h>

#ifdef MESA2X

#include <windows.h>

#else

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#endif

/* some important files from mdsplus... */
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#include "ipdesc.h"

/* #ifndef EXCLUDE_MDSLIB */

/* #include "mdslib.h */

/* #include "mdsshr.h */

#include "mds_camac.h"

#include "camac.h"

#ifdef MESA2X

#define EXP __declspec(dllexport)

#else

#define EXP extern

#endif

EXP long mit_caminit(short* buf);

EXP long mit_camxfr(short* cam_addr, short cam_func , long len,

short mode, unsigned short* buf);

static char* read_word(FILE *fp);

static int read_ini_file(short *buf, int *nServers, int *nCrates, int *nCards);

static int CamSingle(int serverid, char *routine, char *name, int a, int f,

void *data, int mem, unsigned short *iosb);

static int DoCamMulti(int serverid, char *routine, char *name, int a, int f,

int count, void *data, int mem, unsigned short *iosb);

static void getdata(int serverid, void *data);

static int VMSCamSingle(int mdsSock, char *routine, char *name, short address,

short function, long count, void *data, int mem,

unsigned short *iosb);

static int VMSCamMulti(int mdsSock, char *routine, char *name, short address,

short function, long count, void *data, int mem,
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unsigned short *iosb);

long MdsQuery(SOCKET socket, char *question);

int IsVMSServ(SOCKET socket);

int getNumWords(int nbytes, int mem);

int GetCamXandQ(SOCKET socket);

int GetCamX(SOCKET socket);

long GetCamBytCnt(SOCKET socket);

void LogData(struct descrip data);

#ifndef MESA2X

#ifndef MdsIpFree

#define MdsIpFree free

#endif

#define min(x,y) ((x) < (y)) ? (x) : (y)

#endif

typedef struct sCrate tCrate;

struct sCrate {

int nCards;

char *Card[MAX_CARDS];

};

char gServerNames[MAX_ADAPTS][256];

long gServerSocks[MAX_ADAPTS];

tCrate * gCrates[MAX_ADAPTS][MAX_CRATES];

int gGoodCrates[MAX_ADAPTS][MAX_CRATES];
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/* Define error logging functions.Errors are logged to file defined by *

* LOG_FILE environment variable in mds_camac.h */

#ifdef DEBUG

static FILE *gLogFile = NULL;

#define OpenErrorLog() do { gLogFile = fopen(LOG_FILE,"a");} while (0)

#define CloseErrorLog() fclose(gLogFile)

#define ErrorLog(format, ...) do { \

fprintf(gLogFile, format, __VA_ARGS__); \

fflush(gLogFile); \

} while (0)

#define ASSERT(cond, string) if (cond) ErrorLog("Line %d: %s, %s\n",\

__LINE__, #cond, string)

#define LOG_CAMAC_STATUS(status) do { \

int _i, _max;struct stsText *_txt; \

_max = sizeof(camshr_stsText)/sizeof(camshr_stsText[0]); \

_txt = camshr_stsText; \

for (_i=0; _i< _max; _i++) { \

if ((status & 0xfffffff8) == (_txt->stsL_num & 0xfffffff8)) { \

ErrorLog("Camac status: 0x%lx, %s\n",status,_txt->stsA_text); \

break; \

} \

_txt++; \

} \

if (_i==_max) \
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ErrorLog("Camac status: 0x%lx\t",status); \

} while (0)

#else

#define OpenErrorLog()

#define CloseErrorLog()

#define ErrorLog(...)

#define ASSERT(cond, string)

#define LOG_CAMAC_STATUS(status)

#endif

/******************************************************************************

* Routine to initialize camac crate connectred to server and return number of

* servers crates and cards. Server is read from a fixed INI_FILE as defined

* in mds_camac.h .

*****************************************************************************/

static int read_ini_file(short *buf, int *nServers, int *nCrates, int *nCards)

{

int nservers,ncrates,ncards, swapend;

int i,j,k,index;

char sectBuf[256];

char cardKey[256];

int len;

FILE *fp;

char *pbuf;

int bytes = 4;
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char error_string[132];

int status;

/* initialize array */

for (i=0; i<MAX_ADAPTS; i++) {

gServerNames[i][0] = ’\0’;

if (gServerSocks[i]) {

gServerSocks[i] = 0;

}

for (j=0; j<MAX_CRATES; j++) {

if (gCrates[i][j] != NULL) {

free(gCrates[i][j]);

gCrates[i][j] = NULL;

}

gGoodCrates[i][j] = 0;

}

}

/* open ini file */

if ((fp = fopen(INI_FILE,"r"))==NULL)

{

sprintf(error_string, "Could not open file %s\n",INI_FILE);

status = kErrBadMdsIniFile;

ErrorLog("Could not open file %s\n",INI_FILE);

return status;

}

sprintf(error_string,

"Preparing to read the mdsplus specific ini file. Filename = %s.\n"

,INI_FILE);
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/* dxp_md_log_info("read_ini_file",error_string);*/

ErrorLog("%s", error_string);

/* read MDSPLUS_SECTION from INIFILE file */

pbuf = read_env(fp);

if ( (strcmp(pbuf, MDSPLUS_SECTION)) != 0 )

{

ErrorLog("Error: Invalid INI file, %s. No entry for %s.\n",

INI_FILE, MDSPLUS_SECTION);

len = strcmp(pbuf, MDSPLUS_SECTION);

ErrorLog("strcmp(%s, %s) = %hu\n", pbuf, MDSPLUS_SECTION, len);

return kErrBadMdsIniFile;

}

/* read number of mdsplus servers from inifile */

pbuf = readKey(fp, KEY_N_SERVERS);

if (pbuf != NULL)

nservers = atoi(pbuf);

else

ErrorLog("Error reading %s. readKey returns NULL.", KEY_N_SERVERS);

/* read swap_endian for inifile */

pbuf = readKey(fp, KEY_SWAP_ENDIAN);

if (pbuf != NULL)

swapend = atoi(pbuf);

else

ErrorLog("Error reading %s. readKey returns NULL.", KEY_SWAP_ENDIAN);

*nCrates = 0;
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*nCards = 0;

*nServers = 0;

index = 1;

ASSERT(nservers == 0, "Found no servers in init file");

for (i=0; i<nservers; i++) {

/* read number of SERVER_SECTION from file */

pbuf = read_env(fp);

sprintf(sectBuf,SERVER_SECTION,i+1);

if ( (strcmp(pbuf, sectBuf)) != 0 )

{

printf("Error: Invalid INI file, %s. No entry for %s.\n",

INI_FILE, sectBuf);

len = strcmp(pbuf, sectBuf);

ErrorLog("strcmp(%s, %s) = %u\n", pbuf, sectBuf, len);

return kErrNoLibrary;

}

/* Get server name */

pbuf = readKey(fp, KEY_SERVER_NAME);

strcpy(gServerNames[i], pbuf);

ASSERT(gServerNames[i] == NULL, "Couldn’t get Server Name");

/* Get number of crates */

pbuf = readKey(fp, KEY_N_CRATES);

ncrates = atoi(pbuf);

for (j=0; j<ncrates; j++) {
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pbuf = read_env(fp);

sprintf(sectBuf, CRATE_SECTION, i+1, j+1);

ASSERT( (strcmp(pbuf, sectBuf)) != 0,

"Couldn’t read crate section");

/* Get number of cards */

pbuf = readKey(fp, KEY_N_CARDS);

ncards = atoi(pbuf);

if (ncards > 0) {

gGoodCrates[i][j] = 1;

if (buf != NULL) {

buf[index++] = (unsigned short)i;

buf[index++] = (unsigned short)j;

}

gCrates[i][j] = malloc(sizeof(tCrate));

for (k=0; k<MAX_CARDS; k++)

{

if (k<ncards)

gCrates[i][j]->Card[k] = malloc(256);

else

gCrates[i][j]->Card[k] = NULL;

}

gCrates[i][j]->nCards = ncards;

for (k=0;k<ncards;k++) {

sprintf(cardKey, KEY_CARD_NAME, k+1);

pbuf = readKey(fp, cardKey);

strcpy(gCrates[i][j]->Card[k],pbuf);

ASSERT(pbuf==NULL,"Couldn’t get card name");
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(*nCards)++;

}

(*nCrates)++;

}

}

(*nServers)++;

}

if (buf != NULL)

buf[0] = (unsigned short)((index - 1) / 2);

ErrorLog("Found %d Servers, %d Crates, and %d Cards\n",*nServers,

*nCrates,*nCards);

return(0);

}

/******************************************************************************

* Initialization routine. This routine calls read_ini_file(...) and returns

* the number of servers, crates and cards.

******************************************************************************/

long mit_caminit(short* buf)

{

int nServers, nCrates, nCards;

long ret;

OpenErrorLog();

ret = read_ini_file(buf, &nServers, &nCrates, &nCards);

return ret;

}
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/******************************************************************************

Routine to match xia’s transfer function. Seems to be missing a way to report

the actual transfer length...

length is sent to error log if transfer is incomplete

******************************************************************************/

long mit_camxfr(short* cam_addr, short cam_func , long len,

short mode, unsigned short* buf)

{

/* address; Input: address to access (CAMAC A)

* cam_func; Input: cam_func number to address (CAMAC F)

* len; Input: number of bytes to read or write

* mode; Input: camac mode

* buf; Input: data read or written *** data should be formatted as

* unsigned shorts for !(mode & 24_BIT) and as unsigned

* longs for (mode &24_BIT)

*/

short iServ, iCrate, iCard, addr;

char *routine;

char *cardName;

unsigned short iosb[4];

int status, mem, socket, i;

long count, bytes;

int vms = 0;

char cmd[512];

struct descrip ans_d = {0,0,{0,0,0,0,0,0,0},0};

#ifndef EXCLUDE_MDSLIB

int returnLength = 1;
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int null = 0;

#endif

iServ = cam_addr[HA_NMBR];

iCrate = cam_addr[CRATE];

iCard = cam_addr [STA];

addr = cam_addr[SUBADR];

/* Execute a regular CAMAC command */

/* verify crate is set up */

if (gGoodCrates[cam_addr[HA_NMBR]][cam_addr[CRATE]] == 0 )

{

ErrorLog("Invalid Crate for address %d and crate #%d\n",

cam_addr[HA_NMBR],cam_addr[CRATE]);

return kErrInvalidCrate; /* crate not setup */

}

/* establish a connection to our server... */

if ((socket=gServerSocks[iServ]) == 0) {

#ifndef EXCLUDE_MDSLIB

socket = MdsConnect(gServerNames[iServ]);

#else

socket = ConnectToMds(gServerNames[iServ]);

#endif

if (socket <= 0)

{

ErrorLog("NoMDSConnection for socket %d\n",socket);

status = kErrNoMDSConnection;

return status;

}
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gServerSocks[iServ] = socket;

#ifndef EXCLUDE_MDSLIB

socket = MdsSetSocket(&socket);

#endif

ErrorLog("MdsConnection available for socket %d\n",socket);

}

cardName = gCrates[iServ][iCrate]->Card[iCard];

vms = IsVMSServ(socket);

mem = (mode & MODE_24_BIT) ? 24 : 16; /* set 16 or 24 bit transfers*/

#ifdef FORCE_MODE_16BIT

mem = 16;

#endif

bytes = (mem == 24) ? 4 : 2; /* data transferred as USHORTS or ULONGS */

count = len/bytes;

if (!(cam_func & 8)) { /* 0 <= f < 8 is read

* 8 <= f < 16 is control

* 16 <= f <= 32 is write

* f < 8 are reads f > 8 are writes

*/

if( vms == 1) {

switch (mode & MODE_MASK) {

case MODE_STOPW:

routine = "cam$stopw";

break;

case MODE_SCAN:
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routine = "cam$qscanw";

break;

case MODE_QSTOP:

routine = "cam$qstopw";

break;

case MODE_QREPEAT:

routine = "cam$qrepw";

break;

}

status = VMSCamMulti(socket, "cam$qstopw", cardName, addr, cam_func,

count, (void *) buf, mem, iosb);

}

else /* window or *nix system */

{

switch (mode & MODE_MASK)

{

case MODE_STOPW:

routine = "Stopw";

break;

case MODE_SCAN:

routine = "Qscanw";

break;

case MODE_QSTOP:

routine = "Qstopw";

break;

case MODE_QREPEAT:

routine = "Qrepw";

break;

}

status = DoCamMulti(socket, routine, cardName, addr,
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cam_func, count, (void *) buf, mem, iosb);

}

}

else /* we are doing just single length thing... */

{

if (vms == 1)

status = VMSCamSingle(socket, "cam$piow", cardName, addr,

cam_func, 0, (void *) buf, 16, iosb);

else

status = CamSingle(socket, "Piow", cardName, addr, cam_func,

(void *) buf, 16, iosb);

}

if (!(status & 1))

{

ErrorLog("Error sending camac transfer. Status = %d", status);

return status;

}

/* Check camac status bits, X and Q */

status = GetCamXandQ(socket);

if (status == 1)

{

ErrorLog("%s", "Status = CamX&Q\n");

return CAMXANDQ;

}

status = GetCamX(socket);

if (status == 1)

{

ErrorLog("%s","Status = CamX");
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return CAMX;

}

else /* transfer was unsuccessful */

{

status = kErrNotComplete;

bytes = GetCamBytCnt(socket);

ErrorLog("\nERROR! Transfer Incomplete. %08lX of %d bytes transferred",

bytes, len);

return status;

}

}

/******************************************************************************

* Function sends a question to MdsPlus server and returns an integer answer.

*****************************************************************************/

long MdsQuery(SOCKET socket, char *question)

{

struct descrip ans_d = {0, 0, {0,0,0,0,0,0,0}, 0};

int null = 0;

int returnLength = 1;

int status;

#ifndef EXCLUDE_MDSLIB

status = MdsValue(question,&ans_d,&null,&returnLength);

#else

status = MdsValue(socket, question, &ans_d, 0);

#endif

if ((status & 1) &&

(ans_d.dtype == DTYPE_LONG) &&

(ans_d.ptr != NULL))
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{

memcpy(&status,ans_d.ptr,4);

MdsIpFree(ans_d.ptr);

ans_d.ptr = 0;

}

return status;

}

/******************************************************************************

* Function request values of camac status bits X and Q from MdsPlus server.

* Returns a value of 1 is X=1 and Q=1.

*****************************************************************************/

int GetCamXandQ(SOCKET socket)

{

char *question = "CamXandQ()";

long status;

status = MdsQuery(socket, question);

return (int)status;

}

/******************************************************************************

* Function request values of camac status bit X from MdsPlus server. Returns

* a value of 1 is X=1.

*****************************************************************************/

int GetCamX(SOCKET socket)

{

char *question = "CamX()";

long status;

status = MdsQuery(socket, question);

return (int)status;
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}

/******************************************************************************

* Function asks server for number of bytes transferred to or from camac module

* in last operation. Returns the number of bytes transferred.

*****************************************************************************/

long GetCamBytCnt(SOCKET socket)

{

char *question = "CamBytCnt()";

return MdsQuery(socket, question);

}

/******************************************************************************

* Returns 1 is MdsPlus server is running VMS operating system, 0 otherwise.

*****************************************************************************/

int IsVMSServ(SOCKET socket)

{

char *question = "VMS()";

long status;

status = MdsQuery(socket,question);

if (status & 1)

return 1;

else

return 0;

}

/******************************************************************************

* Function determines the number of 16 or 24 bit words to be transferred to

* the camac module from the input variable, the number of bytes to be
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* transferred.

*****************************************************************************/

int getNumWords(int nbytes, int mem)

{

/* nbytes is number of bytes to be tranferred

* mem is number of bits per transfer */

int nWords;

int temp;

#ifndef MESA2X

int bytesPerWord = 2;

#else

int bytesPerWord = (mem == 16) ? 2 : 4;

#endif

nWords = nbytes/bytesPerWord;

/* check to see if there is a leftover unsigned short */

if ((temp = nbytes % bytesPerWord) == 2)

nWords++;

return nWords;

}

/******************************************************************************

* Writes data in hex format to output stream defined in ErrorLog((x),(y))

* macro.

*****************************************************************************/

void LogData(struct descrip data)

{

int i,j,datasz;
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#ifdef DEBUG

/* Log the data */

datasz=data.dims[0];

if (datasz >=10)

ErrorLog("Read %d words.\n", datasz);

ErrorLog("%s"," Data = [ ");

if (datasz >= 16)

j = 8;

else

j = datasz;

/* log all data or first 8 words of large blocks */

for (i=0;i<j;i++)

switch (data.dtype)

{

case DTYPE_LONG:

ErrorLog("%08lX ", *((long *)data.ptr + i));

break;

case DTYPE_ULONG:

ErrorLog("%08lX ", *((unsigned long *)data.ptr + i));

break;

case DTYPE_USHORT:

ErrorLog("%04hx ", *((unsigned short *)data.ptr + i));

break;

}

/* log last 8 words of data for large blocks */

if (datasz >= 16)
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{

ErrorLog("%s","...\n");

for (i=(datasz-8);i<datasz;i++)

{

switch (data.dtype)

{

case DTYPE_LONG:

ErrorLog("%08lX ", *((long *)data.ptr + i));

break;

case DTYPE_ULONG:

ErrorLog("%08lX ", *((unsigned long *)data.ptr + i));

break;

case DTYPE_USHORT:

ErrorLog("%04hx ", *((unsigned short *)data.ptr + i));

break;

}

}

}

ErrorLog("%s","]\n");

#endif

}

/*-------------------------------LINUX ROUTINES-----------------------------*/

/*****************************************************************************

* From remcam libary, this routine performs a single length camac command.

* Modified to use either MdsLib or MdsIpShr based on EXCLUDE_MDS_LIB macro.

*****************************************************************************/
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int CamSingle(int serverid, char *routine, char *name, int a, int f, void *data, int mem, unsigned short *iosb)

{

int status = kErrNoMDSConnection;

int writeData;

struct descrip data_d = {8,0,{0,0,0,0,0,0,0},0};

struct descrip ans_d = {0,0,{0,0,0,0,0,0,0},0};

char cmd[512];

int null =0;

int returnLength = 0;

if (serverid)

{

writeData = (!(f &0x08)) && (f > 8);

sprintf(cmd,"CamSingle(’%s’,’%s’,%d,%d,%s,%d,_iosb)",routine,name,

a,f,(writeData) ? "_data=$" : "_data",mem);

ErrorLog("CamSingle: F=%d, A=%d ,mem=%d ",f,a,mem);

if (writeData)

{

data_d.dtype = mem < 24 ? DTYPE_USHORT : DTYPE_ULONG;

data_d.ptr = data;

#ifndef EXCLUDE_MDSLIB

status = MdsValue(cmd,&data_d,&ans_d,&null,&returnLength);

#else

status = MdsValue(serverid,cmd,&data_d,&ans_d,0);

#endif

}

else

LogData(data_d);

#ifndef EXCLUDE_MDSLIB
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status = MdsValue(cmd,&ans_d,&null,&returnLength);

#else

status = MdsValue(serverid,cmd,&ans_d,0);

#endif

if ((status & 1) &&

(ans_d.dtype == DTYPE_LONG) &&

(ans_d.ptr != NULL))

{

memcpy(&status,ans_d.ptr,4);

MdsIpFree(ans_d.ptr);

ans_d.ptr = 0;

if (data && f < 8)

getdata(serverid,data);

}

} /* end if serverid */

return status;

}

/*****************************************************************************

* From remcam library, this routine performs a read or write command to a

* camac module. Modified to use MdsLib or MdsIpShr.

*****************************************************************************/

int DoCamMulti(int serverid, char *routine, char *name, int a, int f,

int count, void *data, int mem, unsigned short *iosb)

{

int status = 0;

int writeData;

#ifndef EXCLUDE_MDSLIB

int null =0;
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int returnLength = 0;

#endif

if (serverid)

{

struct descrip data_d = {8,1,{0,0,0,0,0,0,0},0};

struct descrip ans_d = {0,0,{0,0,0,0,0,0,0},0};

char cmd[512];

writeData = (!(f &0x08)) && (f > 8);

sprintf(cmd,"CamMulti(’%s’,’%s’,%d,%d,%d,%s,%d,_iosb)",routine,name,

a,f,count,writeData ? "_data=$" : "_data",mem);

ErrorLog("CamMulti F=%d, A=%d, mem=%d",f,a,mem);

if (writeData)

{

data_d.dtype = mem < 24 ? DTYPE_USHORT : DTYPE_ULONG;

data_d.dims[0] = count;

data_d.ptr = data;

LogData(data_d);

#ifndef EXCLUDE_MDSLIB

status = MdsValue(cmd,&data_d,&ans_d,&null,&returnLength);

#else

status = MdsValue(serverid,cmd,&data_d,&ans_d,0);

#endif

}

else /*read data */

{

#ifndef EXCLUDE_MDSLIB
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status = MdsValue(cmd,&ans_d,&null,&returnLength);

#else

status = MdsValue(serverid, cmd,&ans_d,0);

#endif

}

if (((status & 1)!=0) &&

(ans_d.dtype == DTYPE_LONG) &&

(ans_d.ptr != NULL))

{

memcpy(&status,ans_d.ptr,4);

MdsIpFree(ans_d.ptr);

ans_d.ptr = 0;

if (data && f < 8)

getdata(serverid,data);

}

}

return status;

}

/******************************************************************************

* modified (for VMS) from mdsplus remcam library

* This function gets data from the mdsPlus server.

*****************************************************************************/

void getdata(int serverid, void *data)

/* Handel wants the data returned as unsigned shorts when mode = 4

* MESA2X wants data returned as unsigned longs for mode = 5

* so don’t convert data. If 16 bit transfer is done, return

* data will be unsigned short and if 24 bit transfer is done

* return data will be unsigned long. */
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{

int status;

struct descrip answer_d = {0,0,{0,0,0,0,0,0,0},0};

unsigned short *pdata;

int i, type;

#ifndef EXCLUDE_MDSLIB

int null =0;

int returnLength= 0;

#endif

/* retrieve data from server */

#ifndef EXCLUDE_MDSLIB

status = MdsValue("_data",&answer_d,&null,&returnLength);

#else

status = MdsValue(serverid,"_data",&answer_d,0);

#endif

/* LINUX and MACOSX MdsPlus libraries read data as Ushorts or Ulongs

* while VMS MdsPlus libraries return data as Ushorts or signed longs */

if (((status & 1) != 0) &&

((answer_d.dtype == DTYPE_USHORT) ||

(answer_d.dtype == DTYPE_ULONG) ||

(answer_d.dtype == DTYPE_LONG)) &&

(answer_d.ptr != NULL))

{

memcpy(data,answer_d.ptr,((answer_d.dtype == DTYPE_USHORT) ? 2 : 4) *

answer_d.dims[0]);

LogData(answer_d);

}
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else

ErrorLog("\nERROR getting data. Status = %d\n", status);

if (answer_d.ptr != NULL)

MdsIpFree(answer_d.ptr);

}

/*---------------------------------VMS ROUTINES-------------------------------*/

/*****************************************************************************

* This routine performs a single length camac command.Used for control

* functions are are writes, 16 bit.

*****************************************************************************/

int VMSCamSingle(int mdsSock, char *routine, char *name, short address,

short function, long count, void *data, int mem,

unsigned short *iosb)

{

int status = 0;

char cmd[512];

struct descrip ans_d = {0x08,’\0’,{0,0,0,0,0,0,0},0};

struct descrip data_d = {0x08,’\1’,{0,0,0,0,0,0,0},0};

int null = 0;

int returnLength = 0;

data_d.dtype = DTYPE_USHORT;

data_d.dims[0] = count;

data_d.ptr = data;

ErrorLog("F(%d)*A(%d)\tbytes: %ld\t\t",function,address,count);
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sprintf(cmd,"_iosb=zero(4,0wu),_data=$");

#ifndef EXCLUDE_MDSLIB

status = MdsValue(cmd,&data_d,&ans_d,&null,&returnLength);

#else

status = MdsValue(mdsSock,cmd,&data_d,&ans_d,NULL);

#endif

if (ans_d.ptr != NULL)

MdsIpFree(ans_d.ptr);

ans_d.ptr = 0;

sprintf(cmd,

"CamShr->%s(’%s’,long(%d),long(%d),ref(_data),long(%d),ref(_iosb))",

routine,name,address,function,mem);

#ifndef EXCLUDE_MDSLIB

status = MdsValue(cmd,&ans_d,&null,&returnLength);

#else

status = MdsValue(mdsSock,cmd,&ans_d,NULL);

#endif

if ((status == 1)&&

(ans_d.ptr != NULL) &&

(ans_d.dtype == DTYPE_ULONG))

{

memcpy(&status, ans_d.ptr, 4);

MdsIpFree(ans_d.ptr);

if (!(status & 1))

ErrorLog("MDS camac error: status = %d",status);

}

else

ErrorLog("Error excuting command, %s. Status = %d.\n", cmd, status);
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return status;

}

/*****************************************************************************

* This routine performs the io call to read or write data using the CamShr

* function. Adapted from old code to run XerXes.

*****************************************************************************/

int VMSCamMulti(int mdsSock, char *routine, char *name, short address,

short function, long count, void *data, int mem,

unsigned short *iosb)

/* int *camChan; Input: pointer to camac crate to access */

/* unsigned int *address; Input: address to access (CAMAC A) */

/* unsigned int *function; Input: function number to access (CAMAC F) */

/* unsigned int *count; Input: words to read or write */

/* void *data; I/O: data read or written */

{

/*

IDL> print,mdsvalue("_iosb=zero(4,0wu)")

0 0 0 0

IDL> print,mdsvalue("_iosb")

0 0 0 0

IDL> print,mdsvalue(" _status = CamShr->Cam$Piow(’ldx_dxp_1’,_a,_f,\

ref(_data),_mem,ref(_iosb))")

1

IDL> print,mdsvalue(" _status = CamShr->Cam$qstopw(’ldx_dxp_1’,_a,_f,\

ref(_c),ref(_data),_mem,ref(_iosb))")

*/

int status = 0;
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int i = 0;

int len;

unsigned short *pdata = NULL;

struct descrip data_d = {8,1,{0,0,0,0,0,0,0},0};

struct descrip ans_d = {0,0,{0,0,0,0,0,0,0},0};

char cmd[512];

int null = 0;

int returnLength = 0;

int writeData = (!(function &0x08)) && (function > 8);

/* initialize data using mds */

if (writeData)

{

/* initialize data descriptor */

if (mem==16)

{

#ifdef MESA2X

/* reformat data for 16 bit transfers - remove excess zeros */

pdata = malloc(count*2);

for (i=0;i<count;i++)

pdata[i] = ((unsigned short*) data)[2 * i];

#else

pdata = data;

#endif

}

data_d.dtype = mem < 24 ? DTYPE_USHORT : DTYPE_ULONG;

data_d.dims[0] = count;

if (mem==16)
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data_d.ptr = pdata;

else

data_d.ptr = data;

/* initialize variables on MdsServer */

sprintf(cmd,"_iosb=zero(4,0wu),_data=$,_c=size(_data)");

#ifndef EXCLUDE_MDSLIB

status = MdsValue(cmd,&data_d,&ans_d,&null,&returnLength);

#else

status = MdsValue(mdsSock,cmd,&data_d,&ans_d,NULL);

#endif

}

else /* read data */

{

/* initialize variables on MdsServer */

if (mem==24)

sprintf(cmd,"_iosb=zero(4,0wu),_data=zero(%ld,0u),_c=long(%ld)",

count,count);

else

sprintf(cmd, "_iosb=zero(4,0wu),_data=zero(%ld,0wu),_c=long(%ld)",

count,count);

#ifndef EXCLUDE_MDSLIB

status = MdsValue(cmd,&ans_d,&null,&returnLength);

#else

status = MdsValue(mdsSock,cmd,&ans_d,NULL);

#endif

}

if (ans_d.ptr != NULL)

MdsIpFree(ans_d.ptr);

ans_d.ptr=0;

77



/* execute CamShr->routine command */

sprintf(cmd,"CamShr->%s(’%s’,%d,%d,ref(_c),ref(_data),%d,ref(_iosb))",

routine,name,address,function,mem);

#ifndef EXCLUDE_MDSLIB

status = MdsValue(cmd,&ans_d,&null,&returnLength);

#else

status = MdsValue(mdsSock,cmd,&ans_d,NULL);

#endif

if ((status == 1)&&

(ans_d.ptr != NULL) &&

(ans_d.dtype == DTYPE_ULONG))

{

memcpy(&status, ans_d.ptr, 4);

MdsIpFree(ans_d.ptr);

if (status & 1)

{

if (!writeData)

getdata(mdsSock,(void *)data);

}

else

ErrorLog("MDS camac error: status = %d",status);

}

else

ErrorLog("Error excuting command, %s. Status = %d.\n", cmd, status);

if (pdata != NULL)

free(pdata);
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return status;

}

/*------------------------READ INI FILE ROUTINES-----------------------------*/

/*****************************************************************************

* This routine reads charaters from an input file until the target character

* is reached. The output is a pointer to the string of characters upto but

* not including the target. The target is discarded.

*****************************************************************************/

char* read_to_char(FILE* fp, char target)

{

static char buf[256];

static char *pbuf;

char c;

int i=0;

pbuf = &buf[0];

while ( (c=getc(fp)) != target)

{

if (c == EOF)

{

ungetc(c, fp);

return NULL;

}

buf[i] = c;

i++;

}

buf[i] = ’\0’;
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return pbuf;

}

/*****************************************************************************

* This routine reads a string beteen square brackets and returns a pointer

* to the string.

*****************************************************************************/

char* read_env(FILE* fp)

{

static char *pbuf;

/* read string between brackets */

pbuf = read_to_char(fp, ’[’);

pbuf = read_to_char(fp, ’]’);

return pbuf;

}

/*****************************************************************************

* This routine reads a word preceded by white space and followed by an

* equals sign.

*****************************************************************************/

char* read_value(FILE* fp)

{

static char *pbuf;

char c;

/* remove any white space before value */

while (isspace(c = getc(fp)))
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{

if (c == EOF)

{

ungetc(c, fp);

return NULL;

}

}

/* unget last character, first character of value */

ungetc(c,fp);

/* read word */

pbuf = read_to_char(fp, ’=’);

return pbuf;

}

/*****************************************************************************

* function reads a keyword out of the inifile.

*****************************************************************************/

char* readKey(FILE* fp, char* key)

{

char* buf;

int len = 0;

buf = read_value(fp);

if ( (strcmp(buf,key)) != 0 )

{

ErrorLog("Error: Invalid INI file, %s. No entry for %s.\n",

INI_FILE, key);

len = strcmp(buf, key);
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ErrorLog("Output of strcmp is %d. Program reads _%s_, but wants _%s_\n",

len, buf, key);

return NULL;

}

else

{

buf = read_word(fp);

#ifdef DEBUG

ErrorLog("Function readKey outputs: %s\n", buf);

#endif

return(buf);

}

}

char* read_word(FILE *fp)

{

static char buf[256];

static char *pbuf;

char c;

int i=0;

pbuf = &buf[0];

/* remove white spaces before word */

while (isspace(c = getc(fp)))

{

if (c == EOF)

{

ungetc(c, fp);

return NULL;
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}

}

/* last character is not a space, so it is the first

* character of the word */

buf [i] = c;

/* read the rest of the word */

while(!isspace(c=getc(fp)))

{

i++;

buf[i] = c;

}

/* unget last white space */

ungetc(c, fp);

buf[i+1] = ’\0’;

return pbuf;

}
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