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Dipole concept inspired by magnetospheric research

 Dipole is simplest confinement field
 Naturally occurring high-β plasma

(β ~ 2 in Jupiter)

 Opportunity to study new physics relevant to
tokamak fusion and space science

 Can lead to advanced-fuel fusion power
source [Hasegawa, CPP&CF 1(1987)147]

J. Spencer

The Io Plasma Torus around Jupiter
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Dipole can have particle transport without energy transport

 Plasma confined in bad curvature When
will reduce pressure gradient to
When                        flux tube mixing does not cause

energy transport  [Rosenbluth, Longmuir (1957)]

 In tokamak                        can exceed γ. Thus turbulence is
accompanied by energy transport.

 Turbulence driven flux tube mixing will determine
density profile with N=neV=constant.
  Density profile independent of D and Source 
  Profiles characterized by constant particles/flux.

 Tokamak (L-mode): ne~1/V~1/q  [Ref: Baker, PoP 6 (2002) 2675 ]

Dipole: ne~ 1 / V ~1 / R4
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Dipole Plasma Confinement

 Toroidal confinement without
toroidal field
 Closed field line topology

 Superconducting floating coil
creates poloidal field
 No loss to supports
 Steady state
 Natural separatrix
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Unique dipole properties

 Coil inside of plasma
 Field falls dramatically: B2/4π~1/R6

 Field and plasma pressure fall off together leading to high average β
 Stability from plasma compressibility

 Limit on pressure gradient  Small plasma in large vacuum chamber
 No shear  Large-scale adiabatic convection
 No toroidal field, no j||  No drift off field lines (i.e. NC), High β
 Strong density pinch observed, leading to stationary profiles

Dipole illuminates physics of turbulent pinch
 Internal coil not compatible with 14 MeV (DT) neutrons which can

penetrate and heat floating coil.
 τE >> τP makes dipole ideal for advanced fuels (D-D, D-3He).
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The Levitated Dipole Experiment (LDX)

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LDX Floating coil can be supported or levitated

 Observe ionization glow move outwards with levitation as
density rises due to pinch

 Supported mode: Losses to supports dominate X-field
transport (mirror machine)
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Physics of turbulent pinch
 Turbulence driven transport: MHD equations for

N=number/flux=nV and s=entropy density=pVγ.

Constant N=neV and s=pVγ are stationary (invariant) states
Turbulence driven diffusion will tend to flatten gradients in N

and s
Operating scenario
Central heating will drive instability (                   ). Creates

pressure gradient with s~const (not disruptive).
Turbulence will draw in density (pinch) leading to

N=neV~constant.
For p and ne profiles  boundary conditions (I.e. edge

physics) determine total stored energy and particle content.
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During levitated operation stationary density
profiles are usually observed

Stationary density:
  4-chord interferometer measures density profile

Can extract density profile (e.g. Abel inversion)
Stationary profiles exhibit specific chord ratios;

e.g. P23= nl2 / nl3 = 1.5 for constant N, etc
 Stationary profiles form in 15-20 ms [1]

 Stationary density profiles are maintained during large
changes in fueling and heating

 Supported operation: Losses to supports dominate
X-field transport. Profiles not stationary, P23~1

[1] Boxer et al, Nature Physics 6 (2010) 207.
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Density peaks up markedly when coil is levitated

 Supported plasmas show similar turbulence level. Losses
along field mask pinch.
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Time for turbulent pinch determined by D
 Pinch takes ~20 ms to form

                                                                  (Eφ,τcorr from edge probe)
 Probe measurements match pinch time of ~20 ms.
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Profile is robust: heating power modulation
experiment

10 Hz 10 kW (10.5 GHz) modulation
 Density modulation follows power: invariant profile remains unchanged
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Gas puff experiment

 Fueling experiment: Gas puff at t=6 s
  Source (particles/flux) from PDA array peaks to the outside

 Core density doubles
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Low gas pressure profile invariance can be violated

 For sufficient neutral pressure stationary density (P23~1.5)
 Low neutral pressure p0<3.5 mtorr, profile not stationary

Fluctuations become quasi-coherent.
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   MHD &/or drift modes unstable when
 Pressure gradient driven MHD interchange (blue):
 Entropy mode (red):                                    (collisional)

or                                    (collisionless)
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Scrape-off-layer physics provides boundary conditions

 SOL temperature determined by particle balance

 SOL density determined by power balance
! 
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Some consequences of invariant profiles
 For            ,                have

 Define τE=Etot/Ptot , noting                            find τE independent
heating power

 For           ,   have
Dipole amplifies SOL density and pressure much
like gas flow from a large volume through a small
hole

 Defining τP=Ntot/ S find:

 Find τE/ τP is large and depends only on geometric factors
(flux expansion)
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Dipole energy source:Tritium suppressed fusion

 DT has difficult issues relating to tritium breeding and
materials damage (swelling and DPA) from 14 MeV neutrons.

 DD cycle, removing secondary T, would ameliorate problem.

 requires τP<< τE for T removal
 Similarly τP<< τE for ash removal
 Burn secondary 3He

 T decays to 3He
 T-suppressed power source

 would reduce DPA/He to
fission levels

  Dipole study
Kesner et al, Nuc Fus 44 (2004) 193

Sheffield, Sawan, FST 53 (2008) 780.
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Attractiveness of Dipole
 Dipole research presents novel physics, challenging

engineering and an attractive fusion confinement scheme
Steady state
Disruption free - (Plasma is pulled, not pushed)
High average beta
Low wall loading due to small plasma in large vacuum chamber
τE>> τp , as required for advanced fuels
No current drive needed but need internal refrigerator

 LDX focus
Formation of “stationary” (peaked) density and pressure profiles
Stability and β limits
Evaluate τE , τp and  τE/τp

 Issues relating to presence of hot species
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Summary
 LDX routinely operates in levitated mode.

 LDX can also operate supported for comparison.
 Stationary s & N observed during levitation

 Levitation eliminates parallel particle losses and LDX exhibits a dramatic
density pinch.

 Observe broadband fluctuations of density and potential that is
likely cause of the observed pinch.
 Unlike most confinement schemes, in a dipole turbulence leads to strong

inward transport and peaking of density.
 Density pinch without large energy transport

 Turbulent pinch is observed in tokamaks, but particularly strong
with strong field gradient & w/o shear




