

The Levitated Dipole Experiment: Towards Fusion Without Tritium

Jay Kesner MIT

M.S. Davis, J.E. Ellsworth, D.T. Garnier, M.E. Mauel, P.C. Michael, P.P. Woskov *MCP I 3.110*

Presented at the EPS Meeting, Dublin, June 23, 2010

Columbia University

Dipole concept inspired by magnetospheric research

- Dipole is simplest confinement field
- Naturally occurring high- β plasma (β ~ 2 in Jupiter)
- Opportunity to study new physics relevant to tokamak fusion and space science
- Can lead to advanced-fuel fusion power
 source [Hasegawa, CPP&CF 1(1987)147]

Dipole can have particle transport without energy transport

- Plasma confined in bad curvature When $-d \ln p/d \ln V > \gamma$ will reduce pressure gradient to $pV^{\gamma} \approx const$ $V = \oint d\ell/B \propto R^4$
 - When $pV^{\gamma} \approx constan t$ flux tube mixing does not cause energy transport [Rosenbluth, Longmuir (1957)]
 - ► In tokamak $-d \ln p/d \ln V$ can exceed γ . Thus turbulence is accompanied by energy transport.
- Turbulence driven flux tube mixing will determine density profile with N=n_eV=constant.
 - Density profile independent of D and Source
 - Profiles characterized by constant particles/flux.
 - ◆ Tokamak (L-mode): n_e~1/V~1/q [Ref: Baker, PoP 6 (2002) 2675]
 - Dipole: n_e~ 1 / V ~1 / R⁴

Dipole Plasma Confinement

- Toroidal confinement without toroidal field
 - Closed field line topology

Superconducting floating coil creates poloidal field

- No loss to supports
- > Steady state
- Natural separatrix

Unique dipole properties

- Coil inside of plasma
 - \rightarrow Field falls dramatically: B²/4 π ~1/R⁶
 - \triangleright Field and plasma pressure fall off together leading to high average β
- Stability from plasma compressibility
 - ➤ Limit on pressure gradient ⇒ Small plasma in large vacuum chamber
- No toroidal field, no j_{||} ⇒ No drift off field lines (i.e. NC), High β
- Strong density pinch observed, leading to stationary profiles
 Dipole illuminates physics of turbulent pinch
- Internal coil not compatible with 14 MeV (DT) neutrons which can penetrate and heat floating coil.
 - $\succ \tau_{\rm E} >> \tau_{\rm P}$ makes dipole ideal for advanced fuels (D-D, D-3He).

The Levitated Dipole Experiment (LDX)

LDX Floating coil can be supported or levitated

Mechanically Supported

Magnetically Levitated

- Observe ionization glow move outwards with levitation as density rises due to pinch
- Supported mode: Losses to supports dominate X-field transport (mirror machine)

Physics of turbulent pinch

 Turbulence driven transport: MHD equations for N=number/flux=nV and s=entropy density=pV^γ.

$$\frac{\partial}{\partial t} n_{e} V = \frac{\partial}{\partial \psi} D \frac{\partial}{\partial \psi} n_{e} V \qquad D \sim \Sigma E_{\phi}^{2} \tau_{corr} \qquad V = \oint d\ell / B$$

$$\frac{\partial}{\partial t} p V^{\gamma} = \frac{\partial}{\partial \psi} D \frac{\partial}{\partial \psi} p V^{\gamma} + \langle P_{in} \rangle$$

- Constant N=n_eV and s=pV^γ are stationary (invariant) states
- Turbulence driven diffusion will tend to flatten gradients in N and s

Operating scenario

- ➤ Central heating will drive instability $(-\partial \ln p/\partial \ln V > \gamma)$. Creates pressure gradient with s~const (not disruptive).
- ➤ Turbulence will draw in density (pinch) leading to N=n_eV~constant.
- For p and n_e profiles ⇒ boundary conditions (I.e. edge physics) determine total stored energy and particle content.

During levitated operation stationary density profiles are usually observed

Stationary density: $n_e \propto 1/V$, $V = \int d\ell/B : n_e \propto 1/R^4$

- 4-chord interferometer measures density profile
 - Can extract density profile (e.g. Abel inversion)
 - Stationary profiles exhibit specific chord ratios;
 e.g. P₂₃= nl₂ / nl₃ = 1.5 for constant N, etc
- Stationary profiles form in 15-20 ms [1]
- Stationary density profiles are maintained during large changes in fueling and heating
- Supported operation: Losses to supports dominate
 X-field transport. Profiles not stationary, P₂₃~1

[1] Boxer et al, Nature Physics **6** (2010) 207.

Density peaks up markedly when coil is levitated

 Supported plasmas show similar turbulence level. Losses along field mask pinch.

Time for turbulent pinch determined by D

- Pinch takes ~20 ms to form $\frac{d(nV)}{dt} = \langle S \rangle + \frac{d}{d\psi} D \frac{d(nV)}{d\psi} V = \oint dl/B$
 - > $D = R^2 \langle E_{\phi}^2 \rangle \tau_{corr} \approx 0.047 \ V^2/s$ (E ϕ , τ_{corr} from edge probe)
 - Probe measurements match pinch time of ~20 ms.

Profile is robust: heating power modulation experiment

10 Hz 10 kW (10.5 GHz) modulation

Density modulation follows power: invariant profile remains unchanged

Gas puff experiment

- Fueling experiment: Gas puff at t=6 s
 - Source (particles/flux) from PDA array peaks to the outside
- Core density doubles

Low gas pressure profile invariance can be violated

- For sufficient neutral pressure stationary density (P₂₃~1.5)
- Low neutral pressure $p_0 < 3.5$ mtorr, profile not stationary
 - > Fluctuations become quasi-coherent.

MHD &/or drift modes unstable when $-\partial \ln n_e/\partial \ln V > 1$

- Pressure gradient driven MHD interchange (blue): $-\partial \ln p/\partial \ln V > \gamma$
- Entropy mode (red): $-\partial \ln n_e/\partial \ln V > 5/(7-3\eta)$ (collisional) or $-\partial \ln n_e/\partial \ln V > 1/(3(1-\eta))$ (collisionless)

Scrape-off-layer physics provides boundary conditions

SOL temperature determined by particle balance

$$n_{sol}U_B(T_e)A_{eff} = \langle \sigma v \rangle n_{sol}n_0Vol \longrightarrow T_e \approx constant, T_e \approx 20-30 eV$$

SOL density determined by power balance

$$P_{tot} - P_{Rad} = en_e U_B A_{eff} \varepsilon_{ionize} \longrightarrow n_e \propto P_{tot}$$

Some consequences of invariant profiles

- For $p \propto 1/V^{\gamma}$, $V = \oint d\ell/B$ have $E_{tot} = \frac{3}{2} p_{sol} R_{sol}^3 (R_{sol}/R_0)^{11/3}$
 - > Define $\tau_{\rm E}$ =E_{tot}/P_{tot}, noting p_{sol} $\propto n_{sol}$ $\propto P_{tot}$ find $\tau_{\rm E}$ independent heating power
- For $n_e \propto 1/V$, have $N_{tot} = n_{sol} R_{sol}^4 / R_0$ Dipole amplifies SOL density and pressure much like gas flow from a large volume through a small hole
- Defining $\tau_P = N_{tot} / S$ find:

$$\frac{\tau_E}{\tau_P} = \frac{3}{2} (R_{sol} / R_0)^{8/3} (ST_{sol} / P_{tot}) \approx 10 - 50$$

• Find τ_E/τ_P is large and depends only on geometric factors (flux expansion)

Dipole energy source: Tritium suppressed fusion

- DT has difficult issues relating to tritium breeding and materials damage (swelling and DPA) from 14 MeV neutrons.
- DD cycle, removing secondary T, would ameliorate problem.

•
$$D+D$$
 $\rightarrow T+p$
 $\rightarrow He^3+n$

- requires $\tau_P << \tau_E$ for T removal
- Similarly $\tau_P << \tau_E$ for ash removal
- Burn secondary ³He
 - ➤ T decays to ³He
- T-suppressed power source would reduce DPA/He to fission levels
- **Dipole study**Kesner et al, Nuc Fus 44 (2004) 193

Sheffield, Sawan, FST 53 (2008) 780.

Attractiveness of Dipole

- Dipole research presents novel physics, challenging engineering and an attractive fusion confinement scheme
 - > Steady state
 - Disruption free (Plasma is pulled, not pushed)
 - High average beta
 - > Low wall loading due to small plasma in large vacuum chamber
 - $\succ \tau_{\rm E} >> \tau_{\rm p}$, as required for advanced fuels
 - No current drive needed but need internal refrigerator

LDX focus

- > Formation of "stationary" (peaked) density and pressure profiles
- \triangleright Stability and β limits
- ightharpoonup Evaluate au_{E} , au_{p} and $au_{\mathsf{E}}/ au_{\mathsf{p}}$
- > Issues relating to presence of hot species

Summary

- LDX routinely operates in levitated mode.
 - > LDX can also operate supported for comparison.
- Stationary s & N observed during levitation
 - Levitation eliminates parallel particle losses and LDX exhibits a dramatic density pinch.
- Observe broadband fluctuations of density and potential that is likely cause of the observed pinch.
 - Unlike most confinement schemes, in a dipole turbulence leads to strong inward transport and peaking of density.
 - Density pinch without large energy transport
- Turbulent pinch is observed in tokamaks, but particularly strong with strong field gradient & w/o shear