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Abstract.  We report the first production of high beta plasma confined in a fully levitated laboratory dipole using 
neutral gas fueling and electron cyclotron resonance heating.  The pressure results primarily from a population of 
energetic trapped electrons that is sustained for many seconds of microwave heating provided sufficient neutral 
gas is supplied to the plasma. As compared to previous studies in which the internal coil was supported, 
levitation results in improved particle confinement that allows higher-density, high-beta discharges to be 
maintained at significantly reduced gas fueling.  Elimination of parallel losses coupled with reduced gas leads to 
improved energy confinement and a dramatic change in the density profile.  Improved particle confinement 
assures stability of the hot electron component at reduced pressure. By eliminating supports used in previous 
studies, cross-field transport becomes the main loss channel for both the hot and the background species. 
Interchange stationary density profiles, corresponding to an equal number of particles per flux tube, are 
commonly observed in levitated plasmas.  

1. Introduction

The dipole confinement concept [1, 2] was motivated by  spacecraft observations of planetary 

magnetospheres that show centrally-peaked plasma pressure profiles forming naturally  when 

the solar wind drives plasma circulation and heating. Unlike most other approaches to 

magnetic confinement in which stability requires average good curvature and magnetic shear, 

MHD stability in a dipole derives from plasma compressibility  [3–5]. At marginal stability 

!(pV") = 0 (with p the plasma pressure, 

! 

V= dl /B"  is the differential flux tube 

volume, and " = 5/3), and an adiabatic 

exchange of flux tubes does not  modify the 

pressure profile nor degrade energy 

confinement. Non-linear studies indicate that 

large-scale convective cells will form when 

the MHD stability  limit is weakly  violated, 

which results in the circulation of plasma 

between the hot core and the cooler edge 

region [6]. Studies have also predicted that 

the confined plasma can be stable to low 

frequency (drift wave) modes when #=dln 

Te/d ln ne>2/3 [7]. The marginally  stable case 

to both drift  waves and MHD modes, is thus 

where:

p ∝ V γ and
n ∝ V −1.

1! !                           IC/P4-12
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FIG. 1. Schematic of LDX device showing  

electron cyclotron resonance zones configuration.
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Abstract
Measurements of the time evolution of the plasma density profile with a 
levitated dipole in LDX determine the radial particle diffusivity, provided the 
ionization source is known. In discharges where the particle ionization source 
appears to be at the outer plasma edge, we observe an anomolous inward 
particle pinch leading to centrally peaked plasma profiles. The observed 
inward pinch corresponds to a particle diffusivity that is independent of or 
varies weakly on radius. In these circumstances, the magnitude of the 
diffusion coefficient is equal to the value estimated from the turbulent electric 
field fluctuations measured at the edge with an array of floating potential 
probes, or D ≈ R2⟨Eφ2⟩τc, where τc is the correlation time. The fluctuation level 
varies as the plasma density, gas fueling, and microwave heating power 
changes. We discuss the relationship between fluctuations and particle 
transport and describe the relationship between particle diffusivity and 
fluctuation level for several conditions.
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Particle Diffusion Due to Low 
Frequency Fluctuations

• In strongly magnetized plasma, non-axisymmetric 
fluctuations “break” the third adiabatic invariant while 
preserving µ and J.

• With random fluctuations, radial diffusion results, driving the 
particle distribution to the stationary condition, ∂F/∂ψ → 0, 
and an inward turbulent pinch.

• Magnetic fluctuations: Nakada and Mead, JGR, 1965

• Electric fluctuations: T. Birmingham, JGR, 1969

• (µ, J) conservation: Warren, Bhattacharjee, Mauel, GRL, 1993
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Perturbed ψ Caused by Global Fluctuations of 
Geomagnetic Cavity (Easily Measured!)

.

δAφ ∼

Axisymmetric� �� �
L

4

�
Re

Rm

�3
−

4

30

L2

Re

�
Re

Rm

�4
cosφ

� �� �
m=±1

+ . . .

δΦ ∼ −

Axisymmetric� �� �

EcRe

�
Rp

Re

�2
+EcL sinφ� �� �

m=±1

+ . . .

4

Nakada and Mead, JGR (1965) T. Birmingham, JGR (1969)

δAφ ∼

Axisymmetric� �� �
L

4

�
Re

Rm

�3
−

4

30

L2

Re

�
Re

Rm

�4
cosφ

� �� �
m=±1

+ . . .

δΦ ∼ −

Axisymmetric� �� �

Ec



R2
e

L



 +EcL sinφ� �� �
m=±1

+ . . .

4

4Thursday, October 29, 2009



Diffusion Coefficient Depends upon Random 
and/or Turbulent E×B Spectrum

(and not on the structure of the convection field!)

Open Streamlines:
Magnetosphere
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Low-Frequency Dynamics is One-Dimensional
(1D, k⊥ρ ≪ 1, Gyrokinetics!)

A. Chan,  L. Chen, R. White, GRL (1989)
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Adiabatic Radial Dynamics

Linear Response…

Gyrokinetic Quasilinear Diffusion…

Fluctuating
E × B

{

∂F

∂t
+ φ̇

∂F

∂φ
+ ψ̇

∂F

∂ψ
= 0



 ∂

∂t
+ (ωD + ωE)

∂

∂φ



 δF + ψ̇
∂F0

∂ψ
≈ 0

F (µ, J, ψ, φ, t) = F0(µ, J, ψ) + δF (t)

δF (t)− δF (0) ≈
� t

0
dt�ψ̇(t�)

∂F0

∂ψ

5

∂F

∂t
+ φ̇

∂F

∂φ
+ ψ̇

∂F

∂ψ
= 0



 ∂

∂t
+ (ωD + ωE)

∂

∂φ



 δF + ψ̇
∂F0

∂ψ
≈ 0

F (µ, J, ψ, φ, t) = F0(µ, J, ψ) + δF (t)

δF (t)− δF (0) ≈
� t

0
dt�ψ̇(t�)

∂F0

∂ψ

5

∂F

∂t
+ φ̇

∂F

∂φ
+ ψ̇

∂F

∂ψ
= 0



 ∂

∂t
+ (ωD + ωE)

∂

∂φ



 δF + ψ̇
∂F0

∂ψ
≈ 0

F (µ, J, ψ, φ, t) = F0(µ, J, ψ) + δF (t)

δF (t)− δF (0) ≈ −
� t

0
dt�ψ̇(t�)

∂F0

∂ψ

5

∂F0

∂t
=

∂

∂ψ
Dψψ

∂F0

∂ψ
with Dψψ =

� t

0
dt�ψ̇(t�)ψ̇(0) = τcor

������

∂Φ

∂ϕ

������

2

Dψψ =
�

m,ω

π

2
δ(ω − mωd)

���ψ̇m,ω
���
2

T. Birmingham, JGR (1969)
Correlation along

Particle Orbit

{

7Thursday, October 29, 2009



If the correlation time is independent of particle drift velocity, then 
low-frequency gyrokinetics and MHD are equivalent…

MHD Radial Diffusion

Linear MHD Response…

MHD Quasilinear Diffusion…

Fluctuating
E × B
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Plasma/Particle ExB Motion

V = −ϕ̂R
∂Φ
∂ψ

+
ψ̂

RB

∂Φ
∂ϕ

.

ψ̇ = ∇ψ · V =
∂Φ
∂ϕ

= −REϕ

D = R2�E2
ϕ�τc

Flux-tube and 
particle diffusion are 
equal whenever τcor is 

independent of 
particle energy.
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Measuring Radial Diffusion
• What is the RMS level of (REϕ)2?

Answer: REϕ measured directly with edge probe array.

• What is the correlation time, τcor?
Answer: Quasi-steady state discharges in LDX provide long-time 
data records for converged statistics.

• Does density profile evolve in accordance to random E×B 
diffusion?
Answer: Yes! (In certain cases) line-density measurements show 
inward turbulent particle pinch and quasilinear profile relaxation.

• What is the radial profile of Dψψ?
Answer: Profile of light emission show fluctuations exist 
throughout plasma, consistent with turbulent particle pinch.
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(a) Side View
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(b) Top View
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• Good diagnostic coverage for 
low-frequency, long-wavelength 
fluctuations
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Floating Potential Probe Array

24 Probes @ 1 m Radius

Ryan BergmannRick
Lations

• Edge floating 
potential 
oscillations

• 4 deg spacing @ 
1 m radius

• 24 probes

• Very long data 
records for 
excellent 
statistics!!
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Floating Potential Probe Array

15 kW High-β Discharge
ω ~ Ω m = ΩR k, with  

Ω/2π ~ 1 kHz 0.01 0.10 1.00 10.00
Frequency (kHz)

0.1

1.0

10.0

m = 1, 3, 5

80
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Low-Frequency Fluctuations are Observed throughout 
Plasma and Probably Cause Naturally Peaked Profiles 

• Low-frequency fluctuations (f ~ 1 kHz and < 20 kHz) are observed 
with edge probes, multiple photodiode arrays, µwave interferometry, 
and fast video cameras.

• The structure of these fluctuations are complex, turbulent, and still 
not well understood. 

• Edge fluctuations can be intense (E ~ 200 V/m) and are dominated 
by long-wavelength modes that rotate with the plasma at 1-2 kHz 

• High-speed digital records many seconds long enable analysis of 
turbulent spectra in a single shot. We find the edge fluctuations are 
characteristic of viscously-damped 2D interchange turbulence.
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• Turbulent particle pinch links magnetic geometry and particle transport

• When flux-tube volume, δV(ψ), varies rapidly with radius, then the 
turbulent pinch is large

∂N

∂t
= �S� +

∂

∂ψ
D

∂N

∂ψ

LDX:
D ≈ 0.047 Weber2/s

V (pinch) ~ 45 m/s (core) and 400 m/s (edge)

Look!

This is Big

Turbulent Radial Diffusion Implies an Inward Pinch
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Transport Studies Requires Measurements of 
both Sources and Fluxes

• Levitation vs. Supported comparisons 
provide an opportunity to directly observe 
the effects of turbulent transport, as the 
parallel losses are switched off/on.

• Short 1/2 second heating pulses 
minimize influence of hot electrons on 
plasma dynamics.

• Turbulent fluctuations are established 
quickly as the ECRH is switched on. 
Fluctuations diminish after ECRH is 
switched off.
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Naturally Peaked Profiles Established Rapidly
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Decreased Fueling Pressure Allows Plasma 
Rotation and increases Dψψ (edge)

• Examples measured with quasi-steady turbulence at 15 kW ECRH

• 90312028 “low pressure” D2 fueling: 1.0 µTorr, Ω/2π ~ 1.2 kHz, 
Dψψ ~ 0.45 (V⋅s)2/s, REϕ ~ 100 VRMS, and τcor ~ 38 µsec

• 90312025 “med/low pressure” D2 fueling: 1.2 µTorr, Ω/2π ~ 0.9 
kHz, Dψψ ~ 0.80 (V⋅s)2/s, REϕ ~ 110 VRMS, and τcor ~ 67 µsec 

• 90312043 “medium pressure” D2 fueling: 1.3 µTorr, Ω/2π ~ 0.56 
kHz, Dψψ ~ 0.39 (V⋅s)2/s, REϕ ~ 85 VRMS, and τcor ~ 54 µsec

• 90312022 “medium pressure” He fueling: 3.8 µTorr, Ω/2π ~ 0.15 
kHz, Dψψ ~ 0.76 (V⋅s)2/s, REϕ ~ 70 VRMS, and τcor ~ 160 µsec
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Fit-Correlation Time (ms) = 0.194 0.036 0.074 0.064 0.083 0.114 0.050
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90312022 (He)
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90312022 (He)
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Fit-Correlation Time (ms) = 0.489 1.156 0.613 0.589 0.784 0.586 1.992
Plasma Rotation Rate = 114.  160.  162.  116.  128.  139.   65.  116. (Hz)
Plasma Rotation Rate = 169.   65.  160.  152.  152.  160.   72. (Hz)
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ECRH Power (kW)

ECRH Heating Pulse
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Turbulent Particle Pinch is associated with Turbulent 
Enstropy Pinch: Pressure Peaking

• Flux-tube density and enstropy density have 
identical dynamics for a plasma with an 
adiabatic closure, G = PδVγ

• (N, G) ~ constant implies peaked density and 
pressure profiles

• Edge Te ~ 15 eV, implies central Te ~ 500 eV 
with measured diamagnetism and measured 
density profile

• Thermal stored energy of 60 J (this example 
levitated discharge, 2 µTorr D2)
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Works in Progress…
• Improve diagnostics of density evolution and particle source 

profile

• Understand transport boundaries: inner and outer edges

• Diagnose density profile transients

• Additional comparisons between levitated and supported 
discharges

• Improve internal fluctuation structure measurements

• Measure and understand enstropy dynamics and evolution

• Study and understand transport rate changes as a function of 
plasma, fueling, and power variations.
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Summary
• The mechanics of magnetic levitation is proven reliable.

• Levitation eliminates parallel particle losses and allows a 
dramatic peaking of central density.

LDX has demonstrated the formation of natural density 
profiles in a laboratory dipole plasma and the applicability of 
space physics to fusion science.

• Fluctuations of density and potential show large-scale 
circulation that is the likely cause of measured inward pinch.

• Increased stored energy consistent with adiabatic profiles: 
a necessary physics requirement for dipole fusion.
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