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Previous Result using a Supported Dipole:

High-beta (B ~ 26%) plasma created by multiple-
frequency ECRH with sufficient gas fueling

e Using 5 kW of long-pulse ECRH, plasma with trapped fast
electrons (Ex > 50 keV) were sustained for many seconds.

= Magnetic equilibrium reconstruction and x-ray imaging
showed high stored energy > 300 J (7= > 60 msec), high peak
B ~26%, and anisotropic fast electron pressure, P, /P, ~ 5.

e Stability of the high-beta fast electrons was maintained with
sufficient gas fueling (> 10-° Torr) and plasma density.

e D. Garnier, et al., PoP, (2006)
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New Result with Levitated Dipole:

“Naturally” peaked density profiles occur
during levitation

® Magnetic levitation eliminates parallel losses, and plasma
profiles are determined by radial transport processes.

= Multi-cord interferometry reveals dramatic central peaking
of plasma density during levitation.

¢ Low-frequency fluctuations are observed that likely cause
density peaking though interchange mixing.

® This result is important and demonstrates the creation of
“naturally” peaked density profiles in the laboratory.
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Levitated Dipole Confinement Concept:
Combining the Physics of Space & Laboratory Plasmas

e Akira Hasegawa, 1987

e Two key properties of
active magnetospheres:

» High beta, with ~ 200%
in the magnetospheres
of giant planets

“Naturally” peaked
pressure and density
profiles

J. Spencer
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Levitated Dipole Confinement Concept:
Combining the Physics of Space & Laboratory Plasmas

Levitated Dipole Reactor

Steady state
Non-interlocking coils
Good field utilization
Possibility for e > 1p

Advanced fuel cycle

60 m

Internal ring 500 MW
DD(He3) Fusion

Kesner, et. al. Nuclear Fusion (2004)
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What are “Natural” Profiles?

e |n a strong, shear-free magnetic field, ideal MHD dynamics, E-B =0,

is dominated by interchange dynamics with fluctuating potentials and
fluctuating perpendicular ExB flows.

¢ Plasma interchange dynamics is effectively two-dimensional,
characterized by flux-tube averaged quantities:

» Flux tube particle number, N=| dsn/B=n &V
» Entropy function, S= P dW, where y = 5/3
so that (n, P) are related to flux tube volume, 8V = | ds/B

= “Natural” profiles mean N and S are homogeneous. Interchange
mixing drive (N, S) — uniform at the same rate. Also, “natural”
profiles are “stationary” since fluctuating potentials and ExB flows
do not change (N, S).

Friday, November 14, 2008



What are “ Natural” Profiles?

Solenoid, theta-pinch, large aspect ratio torus, ...

e Flux tube volume:
» OV = [ds/B = constant

o Natural profiles:
» n oV =_constant
» P oW =constant

» Density and pressure
profiles are flat

= Density, pressure, and
temperature at edge and at core
are equal.
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What are “ Natural” Profiles?

Dipole

B=1/R
oV =R*

e Flux tube volume:
» 8V = |ds/B=R*

o Natural profiles:
» n oV =_constant
» POV =constant

» Density and pressure profiles _ o
are strongly peaked!!!! Stationary Profiles in LDX:

OVedge/OVeore =~ 50
Neore/Medge ~ 50
Peore/Pedqge =~ 680
Teore/Tedage =~ 14
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What are “ Natural” Profiles?

e “Natural” profiles are also marginally stable MHD profiles.

= N = constant, is the D. B. Melrose criterion (1967) for
stability to centrifugal interchange mode in rotating
magnetosphere.

= S=POW = constant, is the T. Gold criterion (1959) for
marginal stability of pressure-driven interchange mode in

magnetosphere, and also Rosenbluth-Longmire (1957)
and Bernstein, et al., (1958).
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Outline

e LDX and magnetic levitation

o [evitation allows a dramatic peeking of central
density indicative of “natural” dipole profiles.

¢ Improved particle confinement improves fast
electron stability and creates higher stored energy.

e Low frequency fluctuations of density and potential

have large-scales and are the likely cause of the
“naturally” peaked profiles.
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Levitated Dipole Experiment

MIT-Columbia University
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Launcher/Catcher

8 Channel
Laser Detection .
and RT Controller
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Friday, November 14, 2008 12



Friday, November 14, 2008

13



Friday, November 14, 2008

14



Levitation:

.y Reliable and safe!

y Over
time’
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40 hours of “float
* (150,000 sec!)
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Density Profile with/
without Levitation

® Procedure:
» Adjust levitation coil to
produce equivalent magnetic
geomefry

» Investigate multiple-
frequency ECRH heating

® Observe: Evolution of density
profile with 4 channel
interferometer

e Compare: Density profile
evolution with supported and
levitated dipole

Alex Boxer, MIT PhD, (2008)
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Plasma Confined by a Supported Dipole

5 kW ECRH power

e Dy pressure ~ 10 Torr

e Ip~13kAor150J

o Fast electron instability, ~0.5 s

e Long “afterglow” with fast
electrons

e Cyclotron emission (V-band)
shows fast-electrons

e 1x10" cm™ line density
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Plasma Confined by a Levitated Dipole

¢ Reduced fast electron instability
¢ 2 x Diamagnetic flux

® Increased ratio of
diamagnetism-to-cyclotron
emission indicates higher
thermal pressure.

¢ Long “afterglow” with improved
particle confinement.

e 3 xline density
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Multi-Cord Interferometer Shows Strong
Density Peaking During Levitation .c...
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Boxer, et al., “Evidence of “"Natural" Density Profiles in a Dipole-Confined Plasma”
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Inversion of Chord Measurements
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Inversion of

Strongly Peaked Density!!! —

Uniform Number Profile!!! |
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Levitation Always Causes
More Peaked Profiles Relative
to Supported Discharges

Example...

e Full power: 15 kW ECRH
(2.45 GHz, 6.4 GHz, 10.4 GHz)

® 2 x Diamagnetism
(B ~ 18% during levitation)

® 4 x Line Density
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Levitation Always Causes
More Peaked Profiles Relative

to Supported DiSCharges }47 Closed Field Lines ———»
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Improved Particle Confinement < FestElectron _y,

Instability
S80322051

Improves Fast-Electron Stability “[ et - foted —— o
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Low-Frequency Fluctuations are Observed throughout
Plasma and Probably Cause “Naturally” Peaked Profiles

o Low-frequency fluctuations (f~ 1 kHz and < 20 kHz) are observed
with edge probes, multiple photodiode arrays, pwave interferometry,
and fast video cameras.

® The structure of these fluctuations are complex, turbulent, and still
not well understood.

e Edge fluctuations can be intense (E ~ 200 V/m) and are dominated
by long-wavelength modes that rotate with the plasma at 1-2 kHz

e High-speed digital records many seconds long enable analysis of
turbulent spectra in a single shot. We find the edge fluctuations are
characteristic of viscously-damped 2D interchange turbulence.
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Comparing the Turbulent Fluctuation
Spectrum: Supported/Levitated
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Comparing the Turbulent Fluctuation
Spectrum: Supported/Levitated
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“Large Scale”

__— fluctuations seen

across profile

— Evidence of “Stationary”

Density Profile!!

Strong ExB flows (i.e.

potential fluctuations)

with reduced density
fluctuations.
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Edge Potential Fluctuations are Characteristic of
2D Interchange Turbulence in a Rotating Plasma

e Millions of recorded samples are sufficient to compute
converged auto-spectra and bi-spectra of potential
fluctuations in a single shot.

e Edge fluctuations have: (i) dispersion dominated by
plasma rotation, (ii) damping characteristic of a scale-
independent viscosity, and (iii) nonlinear power coupling
from small-to-large scales (as in 2D turbulence).

= See Brian Grierson’s invited talk:
“Global and Local Characterization of Turbulent and
Chaotic Structures in a Dipole-Confined Plasma”.
Basic Plasma Session Ul1, 3:30pm Thursday.
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Next Steps in LDX Dipole Confinement Physics

® Do “natural” pressure profiles, P ~ 1/6VY, develop? Install
soft x-ray filter array for warm plasma profile measurements.

e What are the spatial structures of the convective flows?
Install a reflectometer and complete high-speed optical
tomography studies.

® Create higher density plasma with additional heating:
» 100 kW pulsed 4.6 GHz
» 20 kW CW 28 GHz gyrotron
» 1 MW CW ICRF heating

o What is the effect of magnetic field errors on confinement?
Install non-axisymmetric trim/error coils.
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Summary

¢ The mechanics of magnetic levitation is robust and reliable.

e Levitation eliminates parallel particle losses and allows a
dramatic peeking of central density.

LDX has demonstrated the formation of “natural” density
profiles in a laboratory dipole plasma.

¢ Improved particle confinement reduces improves hot
electron stability and creates higher stored energy.

® Fluctuations of density and potential show large-scale
circulation that is the likely cause of peaked profiles.
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Poster Session CP6: NOW!

Matt Mike

Jen

Friday, November 14, 2008

Rick

33



