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Magnetic Dipole Confinement

� Simplest magnetic field

� Nature’s method of high-ββββ

magnetic confinement.
� ββββ ~ 2 in Jupiter

� Possibility of fusion power

source with near-classical

energy confinement

� Opportunity to study new

physics relevant to fusion

and space science



Oops!  Aurora ⇒ Plasma Loss

� Plasma is mirror trapped with
open field lines which end at
planetary ionosphere

� For fusion, get rid of poles!
⇒ Levitated superconducting

dipole coil

Bright spots at lower
latitude from auroral
ring are caused by
untrapped plasma
particles streaming
from Io, a natural
internal fuelling
source.



Dipole Plasma Confinement

� Toroidal confinement
without toroidal field
�Stabilized by plasma

compressibility
� Not average well

� No magnetic shear

�No neoclassical effects

�No TF or interlocking coils

� Poloidal field provided by
internal coil
�Steady-state w/o current

drive

� J|| = 0 -> no kink instability
drive
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Dipole Confinement continued...

� Marginally stable profiles satisfy adiabaticity condition.
� M.N. Rosenbluth and Longmire, Ann. Phys. 1 (1957) 120.

� Equilibria exist at high-ββββ that are interchange and ideal MHD
ballooning stable

� For marginal profiles with ηηηη    ====    2/3, dipoles may also be drift wave
stable
� Near-classical confinement ?

� Theoretical work in this area has heated up in the last year…

� No Magnetic Shear -> Convective cells are possible
� For marginal profiles, convective cells convect particles but not energy.

� Possible to have low ττττp with high ττττE .
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Progress in Dipole Theory

� Numerous Institutions - Columbia, MIT, IFS, UMd, UCLA, UCSD, others…
� MHD

� Krasheninnikov, Catto,  Hazeltine, PRL 82 (1999) 2689, and others.
� Garnier, Kesner, Mauel, Phys Pl 6(1999) 3431.
� Simakov, Catto, Krasheninnikov, Ramos, Phys Pl 7 (2000) 2526.

� Kinetic theory (Electrostatic)
� Kesner, Phys Plasmas 7 (2000) 3837.
� Simakov, Catto, Hastie Phys Plasmas 8, 4414 (2001)
� Kesner and Hastie, to be published in Phys Pl (2002). P. 2.20

� Kinetic theory (Electromagnetic)
� V. Pastukhov and A. Yu. Sokolov, Nuc. Fusion 32 (1992) 1725.
� Wong, Horton, Van Dam, Crabtree, Phys Pl 8 (2001) 2415. P. 2.22
� Simakov, Hastie, Catto, Phys Pl 9 (2002) 201. P. 2.21
� Goswami, Dorland, Rogers, Garnier, 2001 APS DPP (LP1058)

� Non-linear (Convective Cells)
� Tonge, Huang, Leboeuf, Dawson,  2001 APS DPP (LP1059).
� Pastukhov and Chudin, Plasma Physics Report, 27, (2001) 963.
� Rey and Hassam, Phys. Plasmas 8, 5151 (2001).  P. 2.23



Electrostatic Kinetic Stability

� Linear electrostatic drift-wave
stability boundaries shown
� Plasma outside pressure peak (in

bad curvature) can be drift wave
stable

� Experiment should be drift wave
stable inside of pressure peak
� Reactor may not be

� What happens when linear
stability thresholds are
exceeded?
� Convective cells form
� Tonge, Huang, Leboeuf and Dawson,

[APS 2001]  3-D PIC code
� shows evolution towards

d = 5/3  and  η = 2/3
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Super-critical non-linear evolution

� Pastukhov solved non-linear fluid
equations for hard-core z-pinch in 2-D
� Pastukhov, Chudin, Pl Phys Reports 27

(2001) 907
�  ηηηη = 2/3
� Unstable S’ < 0 edge constraint

� Equilibrium with flow found with large
convective cells
� Score > Sedge

� Transport is non-local in nature
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LDX Experimental Goals

� Investigate high-beta plasmas stabilized by compressibility
� Also the stability and dynamics of high-beta, energetic particles in dipolar magnetic

fields

� Examine the coupling between the scrape-off-layer and the confinement and stability
of a high-temperature core plasma.

� Study plasma confinement in magnetic dipoles
� Explore relationship between drift-stationary profiles having absolute interchange

stability and the elimination of drift-wave turbulence.

� Explore convective cell formation and control and the role convective cells play in
transport in a dipole plasma.

� The long-time (near steady-state) evolution of high-temperature magnetically-confined
plasma.

� Demonstrate reliable levitation of a persistent superconducting ring
using distant control coils.



LDX Experiment Cross-Section

A day in the life…



LDX Floating Coil Overview

� Unique high-performance

Nb3Sn superconducting coil

� 1.5 MA, 800 kJ

� 1300 lbs weight

� 8 hr levitation

� Inductively charged

� Cryostat made from three

concentric tori

� Design < 1 Watt heat leak to Coil

� Helium Pressure Vessel

� Lead Radiation Shield

� Outer Vacuum Shell



Floating Coil Cross-Section

1. Magnet Winding Pack
2. Heat Exchanger tubing
3. Winding pack centering

clamp
4. He Pressure Vessel

(InconelP625)
5. Thermal Shield

(Lead/glass composite)
6. Shield supports (Pyrex)
7. He Vessel Vertical

Supports/Bumpers
8. He Vessel Horizontal

Bumpers
9. Vacuum Vessel (SST)
10. Multi-Layer Insulation
11. Laser measurement

surfaces
13. Outer structural ring



Floating Coil Winding Pack Complete

Advanced Nb3Sn react & wind conductor…

Conductor
insulation

taping head
in operation

Winding 1/3 complete: pancake
finished on right, layer winding
continues…

8 mm



Floating Coil Test is a Success!

� Full current driven test in test
cryostat.

� First current ramp sequence to 106%
of normal operating current.
� Maximum dI/dt = 12.5 A/s

� The coil did not quench !
� No observable degradation of

conductor parameters

Floating coil on test probe and being lowered
into LHe cryostat for powered test at 4.2 K
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LDX F-Coil Helium Pressure Vessel

� Inconel 625 Pressure Vessel
� 125 ATM at 300°K

�  2-3 ATM cold

� 1.5 kg He storage

� Fully machined weight –P150 kg

� Completed construction at Ability
Engineering Technology, South
Holland, IL.
� He vessel formed and machined

� F-coil & supports fitted

� Heat exchange tubing installed

� 2 closure welds

� Pressure tested & code stamped

� Leak test to vacuum @ 125 atm. for
both vessel and heat exchanger



Thermal Radiation Shield

� Intercepts heat leak from warm
vacuum vessel to cold He vessel

� Operates from 10-80°K

� “Cored” fiberglass composite
construction (sailboat technology)

� 2 fiberglass skins, 0.5mm thick
and separated by core provides
strength

� Lead panels provide thermal
inertia

� Copper heat exchange tubing &
conduction strips

� Process prototypes built and
tested at MIT

� Major fabrication complete,
undergoing acceptance testing.



Support Washer Stacks

� Specification
� Hold heat leak to 5 K < 10 mW
� Withstand 10g crash

� Solution
� Stack of 400 4mil thick washers

� Status: Complete!
� Prototype testing complete
� 24 Stacks (~7000 coins) Assembled
� Awaiting integration into F-coil cryostat



Floating Coil Cryostat & Charging Station

� Cryostat Assembly tooling complete

� Current work on cryostat vacuum vessel,

support space frame and other details

� Charging station vacuum vessel under

construction

Cryostat vacuum vessel and support space frame
Charging station
vacuum vessel

Cryostat assembly
tooling



Superconducting Charging Coil

� Large superconducting coil
� NbTi conductor

� 4.5°K LHe pool-boiling cryostat
with LN2 radiation shield

� 1.2 m diameter warm bore

� 5.6 T peak field

� 12 MJ stored energy

� Cycled 2X per day

� Ramping time for F-Coil < 30 min.

� Being built at Efremov Institute

in St. Petersburg, Russia
� Completed design and review

� Scheduled delivery 8/02.

� “Critical Path” item for project.



Charging Coil Construction Progress

� Winding pack status
� Winding completed
� Joints made
� Awaiting warm weather for epoxy

impregnation

� Quench protection equipment
complete awaiting final testing

� Cryostat under production



Launcher/Catcher

� Launcher/Catcher can be used in
both supported and levitated
operation
� Central rod limits fault motion of

floating coil without interrupting
plasma.

� Designed at PPPL

� Installation and Testing imminent



High Tc Superconducting Levitation Coil

� SBIR collaboration with
American Superconductor to
build first HTS coil in the fusion
community

� Uses available BSSCO-2223
conductor

� Operational temp 20-25° K

� Feedback gain selected for
5PHz frequency

� 20 kJ stored energy can be
dumped in < 1 second.

� Under construction

� Delivery this Spring!



Levitation Control System

� Levitation from above
� Requires stabilization of vertical

motion by feedback

� Other motions are stable

� Levitation control system
� Optical detection system

measures position and attitude of
floating coil with 10 µm resolution

� Digital control system



Digital Feedback System

� Design Requirements
� All digital process control
� Mathworks Matlab/Simulink design

tool and visualization software
� Process control on hard real-time

operating system based computer

� Modular Opal-RT / QNX Neutrino
Real-time system implemented
� Hardware/Software testing with

desktop model - LCX II

100BT Ethernet

Win
2000

Development System /
Operator Interface Computer

(control room)

QNX 6
RTOS

High
Speed

I/O

Digital Control Computer
(in experimental hall)

F-coil Optical Position
Detection System

Magnet
Power

Supplies

Launcher
/ Catcher

Misc
Interlocks

Panic
Button

L-coil
Crowbar
Circuit



Conclusions

� Physics of the dipole plasma confinement is interesting and important
for fusion
� Also is a fascinating natural phenomenon

� LDX is the first experiment to investigate plasmas stabilized by
compressibility with near-classical confinement
� Capable of directly testing effects of compressibility, pressure profile control and

axisymmetry on plasma stability and confinement

� Initial diagnostic set and experimental plan to focus on stability of
high-β hot electron plasmas in supported and levitated operation

� LDX is a “world class” superconducting fusion experiment with
sophisticated magnet technology

� All major parts are either finished or under construction

� Check www.psfc.mit.edu/ldx/ for updates on progress

http://www.psfc.mit.edu


Levitated Dipole Related Posters

� Dipole Theory
� Kinetic Stability

� Kesner, J. Theory of Plasma Confinement in a Levitated Dipole

� Simakov, A. N. Stability of Axisymmetric Plasmas in Closed Field Line

 Magnetic Fields

� Wong, H. V. High beta stability of magnetic dipole configurations

� Convective Cells
� Goswami, P. Convective Cell Formation in a Magnetic Dipole Configuration

� Dipole Experiments
� LDX

� Mauel, M. E. Status of LDX Fabrication

� Hansen, A. K. Physics and Operation Plan for LDX

� DISCUS
� Tynan, G. R. DISCUS: A very high beta dipole disk-like equilibria

physics experimental concept


