

Progress in Levitated Dipole Research

Columbia University

Darren Garnier

Columbia University

for the LDX Team

2002 Innovative Confinement Concepts Workshop University of Maryland College Park, MD January 23, 2002

- Columbia University, Department of Applied Physics
 - > Mike Mauel, Darren Garnier, Alex Hansen, Thomas Sunn Pedersen, Eugenio Ortiz
- MIT Plasma Science and Fusion Center
 - Jay Kesner, Joe Minervini, Chris Jones, Ishtak Karim, Phil Michael, Alexi Radovinsky, Joel Schultz, Brad Smith, Alex Zhukovsky, and many others
- Other Universities / Laboratories
 - > PPPL, LBNL, BNL, Efremov Institute
- Industrial Partners
 - > Ability Engineering Technology, Everson Electric, IGC-Advanced Superconductor, American Superconductor, DynaVac

- Introduction to the Levitated Dipole
 - Physics of dipole plasma confinement
 - MHD equilibrium and linear stability
- Recent Theoretical Work
 - Linear drift wave theory
 - Non linear theory
- The Levitated Dipole Experiment
 - LDX Machine Design
 - Current construction status
- Conclusion

Magnetic Dipole Confinement

- Simplest magnetic field
- Nature's method of high-β magnetic confinement.

 $> \beta \sim 2$ in Jupiter

- Possibility of fusion power source with near-classical energy confinement
- Opportunity to study new physics relevant to fusion and space science

Oops! Aurora \Rightarrow Plasma Loss

 Plasma is mirror trapped with open field lines which end at planetary ionosphere

> Bright spots at lower latitude from auroral ring are caused by untrapped plasma particles streaming from Io, a natural internal fuelling source.

- For fusion, get rid of poles!
- Levitated superconducting dipole coil

If $p_1 V_1^{\gamma} = p_2 V_2^{\gamma}$, then interchange does

not change pressure profile.

For $\eta = \frac{d \ln T}{d \ln n} = \frac{2}{3}$, density and

temperature profiles are also stationary.

- Toroidal confinement without toroidal field
 - Stabilized by plasma compressibility
 - Not average well
 - No magnetic shear
 - No neoclassical effects
 - No TF or interlocking coils
- Poloidal field provided by internal coil
 - Steady-state w/o current drive
 - J_{||} = 0 -> no kink instability drive

- Marginally stable profiles satisfy adiabaticity condition.
 - M.N. Rosenbluth and Longmire, *Ann. Phys.* 1 (1957) 120.

$$\delta(pV^{\gamma}) \equiv \delta(S) = 0$$
, where $V \equiv \oint \frac{dl}{B}$, $\gamma = \frac{5}{3}$

- Equilibria exist at high- β that are interchange and ideal MHD ballooning stable
- For marginal profiles with $\eta = 2/3$, dipoles may also be drift wave stable
 - Near-classical confinement ?
 - Theoretical work in this area has heated up in the last year...
- No Magnetic Shear -> Convective cells are possible
 - > For marginal profiles, convective cells convect particles but not energy.
 - + Possible to have low τ_p with high τ_E .

Progress in Dipole Theory

- Numerous Institutions Columbia, MIT, IFS, UMd, UCLA, UCSD, others...
- MHD
 - Krasheninnikov, Catto, Hazeltine, PRL 82 (1999) 2689, and others.
 - Garnier, Kesner, Mauel, Phys PI 6(1999) 3431.
 - Simakov, Catto, Krasheninnikov, Ramos, Phys PI 7 (2000) 2526.
- Kinetic theory (Electrostatic)
 - Kesner, Phys Plasmas 7 (2000) 3837.
 - Simakov, Catto, Hastie Phys Plasmas 8, 4414 (2001)
 - Kesner and Hastie, to be published in Phys PI (2002).
- Kinetic theory (Electromagnetic)
 - V. Pastukhov and A. Yu. Sokolov, Nuc. Fusion 32 (1992) 1725.
 - Wong, Horton, Van Dam, Crabtree, Phys PI 8 (2001) 2415.
 - Simakov, Hastie, Catto, Phys PI 9 (2002) 201.
 - Goswami, Dorland, Rogers, Garnier, 2001 APS DPP (LP1058)
- Non-linear (Convective Cells)
 - Tonge, Huang, Leboeuf, Dawson, 2001 APS DPP (LP1059).
 - Pastukhov and Chudin, Plasma Physics Report, 27, (2001) 963.
 - Rey and Hassam, Phys. Plasmas 8, 5151 (2001).

P. 2.23

P. 2.21

Electrostatic Kinetic Stability

$$d = \frac{\omega_{*p}}{\omega_d} = \frac{d\ln p}{d\ln V} \quad \text{or} \quad p \propto V^{-d}$$

[after Kesner and Hastie, 2002]

- Linear electrostatic drift-wave stability boundaries shown
 - Plasma outside pressure peak (in bad curvature) can be drift wave stable
 - Experiment should be drift wave stable inside of pressure peak
 - Reactor may not be
- What happens when linear stability thresholds are exceeded?
 - Convective cells form
 - Tonge, Huang, Leboeuf and Dawson, [APS 2001] 3-D PIC code
 - shows evolution towards

d = 5/3 and η = 2/3

Super-critical non-linear evolution

- Pastukhov solved non-linear fluid equations for hard-core z-pinch in 2-D
 - Pastukhov, Chudin, Pl Phys Reports 27 (2001) 907
 - > η = 2/3
 - Unstable S' < 0 edge constraint</p>
- Equilibrium with flow found with large convective cells
 - > S_{core} > S_{edge}
 - Transport is non-local in nature

Average radial profiles of S and $\chi_{\text{eff}}/\chi_{\text{ classical}}$

LDX Experimental Goals

- Investigate high-beta plasmas stabilized by compressibility
 - Also the stability and dynamics of high-beta, energetic particles in dipolar magnetic fields
 - Examine the coupling between the scrape-off-layer and the confinement and stability of a high-temperature core plasma.
- Study plasma confinement in magnetic dipoles
 - Explore relationship between drift-stationary profiles having absolute interchange stability and the elimination of drift-wave turbulence.
 - Explore convective cell formation and control and the role convective cells play in transport in a dipole plasma.
 - The long-time (near steady-state) evolution of high-temperature magnetically-confined plasma.
- Demonstrate reliable levitation of a persistent superconducting ring using distant control coils.

LDX Experiment Cross-Section

LDX Floating Coil Overview

- Unique high-performance
 Nb3Sn superconducting coil
 - ≻ 1.5 MA, 800 kJ
 - 1300 lbs weight
 - 8 hr levitation
 - Inductively charged
- Cryostat made from three concentric tori
 - Design < 1 Watt heat leak to Coil</p>
 - Helium Pressure Vessel
 - Lead Radiation Shield
 - Outer Vacuum Shell

Floating Coil Cross-Section

- 1. Magnet Winding Pack
- 2. Heat Exchanger tubing
- 3. Winding pack centering clamp
- 4. He Pressure Vessel (Inconel 625)
- 5. Thermal Shield (Lead/glass composite)
- 6. Shield supports (Pyrex)
- 7. He Vessel Vertical Supports/Bumpers
- 8. He Vessel Horizontal Bumpers
- 9. Vacuum Vessel (SST)
- **10. Multi-Layer Insulation**
- 11. Laser measurement surfaces
- 13. Outer structural ring

Floating Coil Winding Pack Complete

8 mm

Advanced Nb₃Sn react & wind conductor...

Conductor insulation taping head in operation

Winding 1/3 complete: pancake finished on right, layer winding continues...

Floating Coil Test is a Success!

Floating coil on test probe and being lowered into LHe cryostat for powered test at 4.2 K

- Full current driven test in test cryostat.
- First current ramp sequence to 106% of normal operating current.
 - Maximum dl/dt = 12.5 A/s
- The coil did not quench !
 - No observable degradation of conductor parameters

LDX F-Coil Helium Pressure Vessel

- Inconel 625 Pressure Vessel
 - 125 ATM at 300°K
 - 2-3 ATM cold
 - 1.5 kg He storage
 - Fully machined weight 150 kg
- Completed construction at Ability Engineering Technology, South Holland, IL.
 - He vessel formed and machined
 - F-coil & supports fitted
 - Heat exchange tubing installed
 - 2 closure welds
 - Pressure tested & code stamped
 - Leak test to vacuum @ 125 atm. for both vessel and heat exchanger

Thermal Radiation Shield

- Intercepts heat leak from warm vacuum vessel to cold He vessel
 - Operates from 10-80°K
- "Cored" fiberglass composite construction (sailboat technology)
 - 2 fiberglass skins, 0.5mm thick and separated by core provides strength
 - Lead panels provide thermal inertia
 - Copper heat exchange tubing & conduction strips
- Process prototypes built and tested at MIT
- Major fabrication complete, undergoing acceptance testing.

Support Washer Stacks

- Specification
 - Hold heat leak to 5 K < 10 mW</p>
 - Withstand 10g crash
- Solution
 - Stack of 400 4mil thick washers
- Status: Complete!
 - Prototype testing complete
 - > 24 Stacks (~7000 coins) Assembled
 - Awaiting integration into F-coil cryostat

Floating Coil Cryostat & Charging Station

- Cryostat Assembly tooling complete
- Current work on cryostat vacuum vessel, support space frame and other details
- Charging station vacuum vessel under construction

Cryostat vacuum vessel and support space frame

Superconducting Charging Coil

- Large superconducting coil
 - NbTi conductor
 - 4.5°K LHe pool-boiling cryostat with LN2 radiation shield
 - 1.2 m diameter warm bore
 - 5.6 T peak field
 - 12 MJ stored energy
 - Cycled 2X per day
 - Ramping time for F-Coil < 30 min.</p>
- Being built at Efremov Institute in St. Petersburg, Russia
 - Completed design and review
 - Scheduled delivery 8/02.
 - "Critical Path" item for project.

Charging Coil Construction Progress

- Winding pack status
 - Winding completed
 - Joints made
 - Awaiting warm weather for epoxy impregnation
- Quench protection equipment complete awaiting final testing
- Cryostat under production

Launcher/Catcher

- Launcher/Catcher can be used in both supported and levitated operation
 - Central rod limits fault motion of floating coil without interrupting plasma.
 - Designed at PPPL
 - Installation and Testing imminent

High T_c Superconducting Levitation Coil

- SBIR collaboration with American Superconductor to build first HTS coil in the fusion community
- Uses available BSSCO-2223
 conductor
- Operational temp 20-25° K
- Feedback gain selected for
 5 Hz frequency
- 20 kJ stored energy can be dumped in < 1 second.
- Under construction
- Delivery this Spring!

Levitation Control System

- Levitation from above
 - Requires stabilization of vertical motion by feedback
 - Other motions are stable

Levitation control system

- Optical detection system measures position and attitude of floating coil with 10 µm resolution
- Digital control system

Digital Feedback System

- Design Requirements
 - All digital process control
 - Mathworks Matlab/Simulink design tool and visualization software
 - Process control on hard real-time operating system based computer
- Modular Opal-RT / QNX Neutrino Real-time system implemented
 - Hardware/Software testing with desktop model - LCX II

- Physics of the dipole plasma confinement is interesting and important for fusion
 - > Also is a fascinating natural phenomenon
- LDX is the first experiment to investigate plasmas stabilized by compressibility with near-classical confinement
 - Capable of directly testing effects of compressibility, pressure profile control and axisymmetry on plasma stability and confinement
- Initial diagnostic set and experimental plan to focus on stability of high- β hot electron plasmas in supported and levitated operation
- LDX is a "world class" superconducting fusion experiment with sophisticated magnet technology
- All major parts are either finished or under construction
- Check www.psfc.mit.edu/ldx/ for updates on progress

Levitated Dipole Related Posters

• Dipole Theory

•

- Kinetic Stability
 - Kesner, J. Theory of Plasma Confinement in a Levitated Dipole
 - Simakov, A. N. Stability of Axisymmetric Plasmas in Closed Field Line Magnetic Fields
 - Wong, H. V. High beta stability of magnetic dipole configurations
- Convective Cells
 - Goswami, P. Convective Cell Formation in a Magnetic Dipole Configuration
- Dipole Experiments
 - > LDX
 - Mauel, M. E. Status of LDX Fabrication
 - Hansen, A. K. *Physics and Operation Plan for LDX*
 - > DISCUS
 - Tynan, G. R. DISCUS: A very high beta dipole disk-like equilibria physics experimental concept