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Abstract

Motivated by the electron cyclotron heating being employed on dipole
experiments, the effects of a hot species on stability in closed magnetic field
line geometry are investigated. The interchange stability of a plasma of
background electrons and 1ons with a fraction of hot electrons 1s considered.
The species diamagnetic drift and magnetic drift frequencies are assumed to be
of the same order, and the wave frequency is assumed to be much larger than
the background drift frequencies. The background plasma i1s treated as a single
fluid, while a fully kinetic description is employed for the hot species. It is
found that geometrical effects significantly complicate the analysis. In general
dipolar geometry, poloidal variations of electric and magnetic fields cause the
dispersion relation to become an integro-differential equation, which without
approximations can only be solved numerically. To examine the possibility of
at least a partially analytic solution as well as to obtain an intuitive
understanding of instabilities we examine a point dipole and consider the
effects of hot electrons to be small and introduce them pertubatively. The
dispersion relation is analyzed for the frequency range much smaller as well as
of the same order as the hot electron magnetic drift frequency. Two regimes
of pressure balance are examined: one dominated by hot electrons and another
with the background and hot pressures being comparable.



Plasma Model

* Dipole geometry
B,=VyxVe T, =R2%v;

* Plasma

— Background fluid electrons, n,, T,

— Background fluid 10ns, n;, T,

— Kinetic hot electrons, n, << n,n, T,>> T, T,
* Motivation

— Interchange stability of ECH heated electrons



Background plasma
+ Equilibrium: V. (ngj g P2 =0
e Perturbations: C; = Cl(w,e)e—iﬂﬂ'l?
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Background plasma

* (Quasi-neutrality:

— _ — 1 V.3
Ny, =n; —ny, =; \Y J,

« Vi Component of Ampere’s Law:

ilQp — By ‘V(R2Q§)=ﬂojlb Vy+ugdy, - Vy

with Bj = QB +ng




Hot electrons
» Hot electrons Q, 2w, ~v-V>>ay,

e First order:
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Hot electrons

e Assumptions:
— High mode number = [>>1
— Coulomb gauge = 4y /(AW ~ A||)~ 1/1<<1
— Interchange mode = O, = B, VG, =0
+ @ is up-down symmetric, and flux function

. A||1s up-down asymmetric => §V||A||d2' 0
« Iy Bo o< fvgidv=0

— Near marginality J;, -V, Qp, V- are flux functions
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Dispersion relation

A LB @ (=
() e

where (@, )e/IT, =—dInV /dy

 Resonant effects
virt

— Strong resonance: <0)D >r reverses sign at
Aeris =2B 1/ By(1+s) happens only when s > 1 E ; Vi

coefficients are complex

— Weak resonance: (@p) ) - ~ @ happens only

for v — 0, coefficients depend on @ v



Dispersion relation

 Ignoring resonant effects — quadratic equation.

* Ordering 1ssues:
— By, << B, ~1 always stable, since d <y
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Dispersion relation

* Resonant effects
— Strong resonance — always unstable (for our /o)

— Weak resonance — let @ =@y + @

* by << P ~1, %O‘xia}kh( —%Uh)

dInng, > 3dIn7,

stable for dv 23 dy

 Other cases have to be solved numerically



Point dipole geometry

* Separable solution:

w(r,u)= th(ﬂ)(’%’)&

where u=cosé

— Grad-Shafranov: 372}2’ %@;h — o +2)fgh' T

+4/a
where By = ,Uopo”o ’ pO(w )2
oy,

— For given £ solve for h(u) a then express all
equilibrium quantities in terms of them, e.g.
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Point dipole geometry

. . ““Ufn
* Drift reversal —sign of (@wp), = i) ?gif t

1

where trajectory average 1s defined by

e S [P g (F e
jdr hl/al dh)2+a2h \/ \/ a2h

with the turning points given by

0!2 — (dh (:uturn ))2 + a2h2 (luturn )

 Drift reversal does not occur.




Point dipole geometry
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Point dipole geometry

 Stability analysis without resonant effects
— (I1)>0
« B, ~ B, ~1and B, << ), ~1 are always stable
since 0<d <y
 Stability analysis with resonant effects
= B~ By
Current calculations suggest that stability requirement 1s
identical to 8, << B3, ~1 e.g. By =05, =3

— Need to evaluate more cases — work in progress



Conclusions

* Analysis of hot electron effects on the interchange stability of
dipolar plasma 1s similar to Z-pinch. Geometrical
complications force the problem to become purely
computational

e Semi-analytical solution 1s possible for point dipole
approximation.

— Drift reversal does not occur, so only weak resonance can make plasma
unstable.

— For By, << B, ~1, By ~ [, plasma is stable to interchange modes
in the absence of resonant effects. Interaction of resonant electrons with
the wave require d Inngy, /dy = %d InTj, /dy for stability

— Further calculations are required for :Bb << :Bh case In point dipole
geometry.



