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Results

! Stable high beta plasmas are created in LDX

! Large diamagnetic currents carried by fast electrons

! Imaging shows a highly localized peak near ECRH resonance

!Magnetic reconstruction gives ~ 20% peak beta

!When stable…dominant loss channels to support rods

! High beta requires sufficient neutral gas pressure

! 3 regimes found: (1) unstable, (2) high-!, (3) afterglow

! Increasing gas pressure causes: (1) dramatic rise in density, 

(2) stabilization of the HEI, and (3) transition to high-! regime

!Hysteresis in gas fueling required to maintain stability



Outline

! Introduction to the Dipole fusion concept

! Description of the Levitated Dipole Experiment (LDX)

! How high beta plasmas are created

! Reconstructing the magnetic equilibrium

! Controlling the high beta state with neutral gas fueling

! Hot Electron Interchange Instability

! Summary and next steps...



Testing a New Approach to Fusion and 

Laboratory Plasma Confinement
Levitated Dipole Fusion Concept
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! Internal ring

! Steady state

! Non-interlocking coils

! Good field utilization

! Possibility for !E > !p

! Advanced fuel cycle



Investigating the Dipole Concept

! Stability: 

!Can a dipole be stable at high "?

! Energy Confinement: 

!Sufficient to burn advanced fusion fuels?

! Particle Confinement: 

!Can convection decouple !p and !E ?

! Engineering: 

!Superconducting magnet surrounded by fusion plasma?



LDX Phase I 

Investigating the Dipole Concept

! Stability: 

!Can a dipole be stable at high "?

! Energy Confinement: 

!Sufficient to burn advanced fusion fuels?

! Particle Confinement: 

!Can convection decouple !p and !E ?

! Engineering: 

!Superconducting magnet surrounded by fusion plasma?



The Levitated Dipole Experiment (LDX)



The Levitated Dipole Experiment (LDX)



LDX Experiment Cross-Section

2 m

! Superconducting dipole 
magnet I > 1 MA

! Large 5 m diameter 
vacuum vessel

! Expansive diagnostic 
access

! Dipole supported by 
three thin spokes

! Two ECRH heating 
frequencies provide up 
to 5 kW power

Hoist

Inductive
Charging



Thin Supports Remain a Major Power Loss

Three high-strength, alumina-
coated spokes support dipole 

during Phase I experiments

Supports become “warm” 
during high-beta plasma 

operation

(Elimination of supports, next step, will further enhance confinement.)



ECRH Strong at Equatorial Resonance

! Up to 5 kW total ECRH power 

! 2.45 GHz and 6.4 GHz
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Plasma Diagnostic Set

! Magnetic equilibrium

! flux loops, Bp coils, Hall effect sensors

! Fast electrons

! 4 Channel x-ray PHA, x-ray detector, Hard X-ray camera

! Core parameters

! interferometer, visible cameras, visible diode and array 

! Fluctuations

! Edge Isat and Vf probes, Mirnov coils, visible diode array, 
interferometer

! Edge parameters

! swept probes



Typical LDX Plasma

! Setup for Shot 50701014

! Small D2 gas pre-fill

! ECRH power for 12 seconds

! Three regimes observed

! Initial unstable

! Stable high-!

!Afterglow 





Unstable and Stable ECRH regimes

! Transitory unstable regime with small, localized plasma 
(anisotropic) and sparks caused by rapid radial loss of hot 
electrons to coil

! Bright ionization transition followed by steady large 
plasma with isotropic profile



Typical Shot: Indicates 3 regimes                 

! Unstable Regime: 

! Fast electron radial transport

! Low density

! Low diamagnetism (low !)

! High Beta Regime:  

! Large diamagnetic current 

! Measurable density. 

! " loss events accompanied by 

xray bursts

! Low frequency edge electric and 
magnetic fluctuations

! Afterglow: (no input power)

! Low density

! Slow diamagnetism decay

! Quiescent with instability bursts
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Characterizing the High Beta Regime

! Quasi steady state

! Bulk plasma has increased density

! Edge density ~ 1 x 1010 cm-3 

! Peak density near ECRH cutoff ~ 1011 cm-3

! Fast electron population with 100-200 keV energies

! Significant diamagnetic current ~ 3 kA

!Afterglow indicates the current is carried by fast electrons



Visible

Fast Electrons: Anisotropic at ECRH Resonance



VisibleX-Ray
E > 40 keV

Fast Electrons: Anisotropic at ECRH Resonance



Magnetic Reconstruction

! 26 measurements used to 
reconstruct pressure profile

! Simple model with 4 
unknowns:

! Peak pressure, p0

! Peak major radius, Rp

! Profile steepness, g

!Anisotropy, p⊥ / p"

! Flux though superconducting 
dipole held constant
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B×∇p⊥

B2
+

B× κ

B2

!

p‖ − p⊥
"

0.6 0.7 0.8 0.9 1.1 1.2

200

400

600

800

1.0

p⊥ ≈ p0

!

Rp

Rmid

"4g !Bmid

B

"p⊥/p‖−1

p⊥

Rmid



Anisotropic Magnetics Reconstruction

! Shot 50513029

! Fixed from imaging

!Rpeak = 0.75 m

! p⊥ / p" = 5

! Magnetics fit

! Etotal = 330 J with 5 kW input

! Ip = 3.4kA 

!!max ~ 20% 
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Controlling the High-! with Gas Puffing

! With sufficient neutral gas pressure, plasma enters high-! 
regime

! With insufficient neutral gas pressure, the plasma will 
become unstable (sometimes violently)

! A hysteresis is the observed thresholds implies the 
bifurcation of the low density unstable and stable high-! 
regimes

! Qualitatively consistent with theory of the Hot Electron 
Interchange Mode stability
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HEI Instability Can Terminate High-! Plasma
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Insufficient Fueling Leads to Instability

! Plasma attempts to enter stable regime repeatedly



Insufficient Fueling Leads to Instability

! Plasma attempts to enter stable regime repeatedly



HEI ⇒ Hysteresis in Gas Requirements 

! High fueling needed to 
stabilize HEI, increase 
density, and increase beta

!Unstable regime evolves 
gas from vessel walls by 
surface heating

! Once stable, less fueling 
is needed to maintain 
stability

!Without continued puffing, 
plasma pumps required gas 
from chamber
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HEI ⇒ Hysteresis in Gas Requirements 

! High fueling needed to 
stabilize HEI, increase 
density, and increase beta

!Unstable regime evolves 
gas from vessel walls by 
surface heating

! Once stable, less fueling 
is needed to maintain 
stability

!Without continued puffing, 
plasma pumps required gas 
from chamber
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! Bulk plasma must satisfy MHD adiabaticity condition

! Fast electron stability enhanced due to coupling of fast 
electrons to background ions

Hot Electron Interchange Stability

Krall, (1966)

Rosenbluth and Longmire, (1957) 
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Hysteresis in evolution of stability limit

! Unstable regime has high feh and 40 kV electrons

! Increased gas fueling ⇒ stabilization ⇒ feh to drop by 1/10

! In high-! regime, fast electrons heat ⇒ higher stability limit
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Next Step:  Levitation

! Fast electron losses to supports eliminated

! Pitch angle scattering reduce anisotropy, not beta

!Anisotropy driven modes relax plasma without losses

! Bulk plasma confinement also improved

! Stable fast electron fraction with lower neutral gas fueling ?

! Radial transport driven profiles

! Single peaked, broader (more stable) profiles

! Expectation of improved stability and confinement

!Contrast with supported operation will further understanding of 

unstable/high-! regime bifurcation.



Summary

! Stable high-beta plasmas are created in LDX

! Imaging shows highly localized peak near ECRH resonance

!Magnetic reconstruction gives ~ 20% peak beta

! Plasma losses are to thin dipole supports

! High beta requires sufficient neutral gas pressure to 
stabilize hot electron interchange mode

! Demonstrable hysteresis in threshold levels for transition 
to and from unstable regime



In case you missed the posters...

http://www.psfc.mit.edu/ldx

! Alex Boxer

!Microwave Interferometer

! Jen Ellsworth

! X-Ray Measurements

! Alex Hansen

! Effect of ECRH Location on Confinement

! Jay Kesner

!Hot Electron Instability in a Dipole

! Emmanual Mimoun

! Photodiode Array Measurements

! Eugenio Ortiz

! Probe Measurements of Electrostatic Fluctuations



The End

! What follows are extra slides that aren’t making it into the 
talk....



LDX High-! Plasma Parameters

• Density

! Line average density 1-5 x 1010 / cc

! Edge density 0.1-1 x 1010 / cc

! Temperature

!Hot-electron energy 100-200 keV (and higher)

! Edge temperature 10-20 eV

! Pressure

! Edge 0.01 Pa, Core 500 Pa.  --> Ratio ~ 50000 

!Beta (local maximum) ~ 20%

! Confinement

! Stored energy ~ 400 J with 5 kW input power

! !E ~ 80 msec.



Controlling HEI Bursts

! Different run day

!Wall conditioning not quite 
so good

! Typical high beta regime

! Many small HEI modes

!Does not lead to beta 
collapse

! Marginal stability?
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More gas!

! Same conditions as 
previous shot

! Large puff at 2.5 s

! Stabilizes small HEI

!More background density
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Even more?

! That did it.

!But stored energy is 
reduced due to increased 
pitch angle scattering of 
fast electrons
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Observed hysteresis in gas fueling at transitions 
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! Clear separation between stability onset and loss of stability

! Trend seen with 6.4 GHz power level

!More power requires more fueling

! Not shown:  also trend seen with shaping coil current

!Required gas pressure increases with decreasing plasma size


