

# Production and Study of High-Beta Plasma Confined by a Superconducting Dipole Magnet





Darren Garnier For the LDX Team

47<sup>th</sup> Annual Meeting of the Division of Plasma Physics of the American Physical Society Denver, Colorado October 28, 2005



- Stable high beta plasmas are created in LDX
  - Large diamagnetic currents carried by fast electrons
  - Imaging shows a highly localized peak near ECRH resonance
  - Magnetic reconstruction gives ~ 20% peak beta
  - When stable...dominant loss channels to support rods
- High beta requires sufficient neutral gas pressure
  - > 3 regimes found: (1) unstable, (2) high-β, (3) afterglow
  - Increasing gas pressure causes: (1) dramatic rise in density,
     (2) stabilization of the HEI, and (3) transition to high-β regime
  - Hysteresis in gas fueling required to maintain stability

# Outline

- Introduction to the Dipole fusion concept
- Description of the Levitated Dipole Experiment (LDX)
- How high beta plasmas are created
- Reconstructing the magnetic equilibrium
- Controlling the high beta state with neutral gas fueling
- Hot Electron Interchange Instability
- Summary and next steps...

# Testing vitated Apple & Galifor Eusight and Laboratory Plasma Confinement ITER Levitated Dipole Reactor



400-600 MW DT Fusion

500 MW DD(He3) Fusion

Kesner, et. al. Nucl. Fus. 2002

# Laboratory Plasma Confinement Internal ring

- Internal ring
- Steady state
- Non-interlocking coils
- Good field utilization
- Possibility for  $\tau_E > \tau_p$
- Advanced fuel cycle



60 m

500 MW DD(He3) Fusion

Kesner, et. al. Nucl. Fus. 2002

## **Investigating the Dipole Concept**

• Stability:

**Can a dipole be stable at high**  $\beta$ ?

• Energy Confinement:

Sufficient to burn advanced fusion fuels?

• Particle Confinement:

**)** Can convection decouple  $\tau_p$  and  $\tau_E$  ?

• Engineering:

Superconducting magnet surrounded by fusion plasma?

#### **Investigating the Dipole Concept**

• Stability:

**Can a dipole be stable at high** β?

• Energy Confinement:

Sufficient to burn advanced fusion fuels?

• Particle Confinement:

 $\blacktriangleright$  Can convection decouple  $\tau_{p}$  and  $\tau_{E}$  ?

• Engineering:

Superconducting magnet surrounded by fusion plasma?

## LDX Phase I

#### **The Levitated Dipole Experiment (LDX)**



#### **The Levitated Dipole Experiment (LDX)**



## **LDX Experiment Cross-Section**

- Superconducting dipole magnet I > 1 MA
- Large 5 m diameter vacuum vessel
- Expansive diagnostic access
- Dipole supported by three thin spokes
- Two ECRH heating frequencies provide up to 5 kW power



#### **Thin Supports Remain a Major Power Loss**





Three high-strength, aluminacoated spokes support dipole during Phase I experiments Supports become "warm" during high-beta plasma operation

(Elimination of supports, next step, will further enhance confinement.)

#### **ECRH Strong at Equatorial Resonance**

- Up to 5 kW total ECRH power
- 2.45 GHz and 6.4 GHz



## Plasma Diagnostic Set

- Magnetic equilibrium
  - flux loops, Bp coils, Hall effect sensors
- Fast electrons
  - ▶ 4 Channel x-ray PHA, x-ray detector, Hard X-ray camera
- Core parameters
  - interferometer, visible cameras, visible diode and array
- Fluctuations
  - Edge Isat and Vf probes, Mirnov coils, visible diode array, interferometer
- Edge parameters
  - swept probes

## **Typical LDX Plasma**

- Setup for Shot 50701014
  - Small D<sub>2</sub> gas pre-fill
  - ECRH power for 12 seconds
- Three regimes observed
  - Initial unstable
  - Stable high-β
  - Afterglow



#### **Unstable and Stable ECRH regimes**



- Transitory unstable regime with small, localized plasma (anisotropic) and sparks caused by rapid radial loss of hot electrons to coil
- Bright ionization transition followed by steady large plasma with isotropic profile

## **Typical Shot: Indicates 3 regimes**



- Unstable Regime:
  - Fast electron radial transport
  - Low density
  - Low diamagnetism (low β)
- High Beta Regime:
  - Large diamagnetic current
  - Measurable density.
  - β loss events accompanied by xray bursts
  - Low frequency edge electric and magnetic fluctuations
- Afterglow: (no input power)
  - Low density
  - Slow diamagnetism decay
  - Quiescent with instability bursts

## **Characterizing the High Beta Regime**

- Quasi steady state
- Bulk plasma has increased density
  - Edge density ~ 1 x 10<sup>10</sup> cm<sup>-3</sup>
  - ▶ Peak density near ECRH cutoff ~ 10<sup>11</sup> cm<sup>-3</sup>
- Fast electron population with 100-200 keV energies
- Significant diamagnetic current ~ 3 kA
  - Afterglow indicates the current is carried by fast electrons

#### **Fast Electrons: Anisotropic at ECRH Resonance**



#### **Fast Electrons: Anisotropic at ECRH Resonance**



#### **Magnetic Reconstruction**

- 26 measurements used to reconstruct pressure profile
- Simple model with 4 unknowns:
  - Peak pressure, p<sub>0</sub>
  - Peak major radius, R<sub>p</sub>
  - Profile steepness, g
  - Anisotropy,  $p_{\perp} / p_{\parallel}$
- Flux though superconducting dipole held constant

$$J_{\phi} = \frac{\mathbf{B} \times \nabla p_{\perp}}{B^2} + \frac{\mathbf{B} \times \kappa}{B^2} (p_{\parallel} - p_{\perp})$$

$$p_{\perp} \approx p_0 \left(\frac{R_p}{R_{\text{mid}}}\right)^{4g} \left(\frac{B_{\text{mid}}}{B}\right)^{p_{\perp}/p_{\parallel}-1}$$

$$p_{\perp} \overset{800}{400} \underbrace{q_{\perp}}_{200} \underbrace{q_{\perp}}_{0.6 \text{ 0.7 0.8 0.9 1.0 1.1 1.2}}_{R_{\text{mid}}}$$

#### **Anisotropic Magnetics Reconstruction**

- Shot 50513029
- Fixed from imaging
  - ▶ *R*<sub>peak</sub> = 0.75 m

 $p_{\perp} / p_{\parallel} = 5$ 

Magnetics fit

Etotal = 330 J with 5 kW input



## Controlling the High- $\beta$ with Gas Puffing

- With sufficient neutral gas pressure, plasma enters high-β regime
- With insufficient neutral gas pressure, the plasma will become unstable (sometimes violently)
- A hysteresis is the observed thresholds implies the bifurcation of the low density unstable and stable high-β regimes
- Qualitatively consistent with theory of the Hot Electron Interchange Mode stability

#### High-β Plasma Begins Upon HEI Stabilization



In unstable regime, quasi-continuous HEI instability prevents plasma build-up ...



#### HEI Instability Can Terminate High-β Plasma



#### **Insufficient Fueling Leads to Instability**

Plasma attempts to enter stable regime repeatedly

## **Insufficient Fueling Leads to Instability**

Plasma attempts to enter stable regime repeatedly

## **HEI** $\Rightarrow$ **Hysteresis in Gas Requirements**

- High fueling needed to stabilize HEI, increase density, and increase beta
  - Unstable regime evolves gas from vessel walls by surface heating
- Once stable, less fueling is needed to maintain stability
  - Without continued puffing, plasma pumps required gas from chamber



## **HEI** $\Rightarrow$ **Hysteresis in Gas Requirements**

- High fueling needed to stabilize HEI, increase density, and increase beta
  - Unstable regime evolves gas from vessel walls by surface heating
- Once stable, less fueling is needed to maintain stability
  - Without continued puffing, plasma pumps required gas from chamber



#### **Hot Electron Interchange Stability**

Bulk plasma must satisfy MHD adiabaticity condition

$$\delta\left(p_{b}V^{\gamma}\right) = 0$$
where  $V = \oint \frac{d\ell}{B}$  or  $-\frac{d\ln p_{b}}{d\ln V} < \gamma^{-1}$ 

 Fast electron stability enhanced due to coupling of fast electrons to background ions
 Krall, (1966)

$$-\frac{d\ln n_{eh}}{d\ln V} < 1 + \frac{m_{\perp}^2}{24} \frac{\omega_{dh}}{\omega_{ci}} \frac{N_i}{N_{eh}}$$



- Unstable regime has high feh and 40 kV electrons
- Increased gas fueling  $\Rightarrow$  stabilization  $\Rightarrow$  f<sub>eh</sub> to drop by 1/10
- In high- $\beta$  regime, fast electrons heat  $\Rightarrow$  higher stability limit



- Unstable regime has high feh and 40 kV electrons
- Increased gas fueling  $\Rightarrow$  stabilization  $\Rightarrow$  f<sub>eh</sub> to drop by 1/10
- In high- $\beta$  regime, fast electrons heat  $\Rightarrow$  higher stability limit



- Unstable regime has high feh and 40 kV electrons
- Increased gas fueling  $\Rightarrow$  stabilization  $\Rightarrow$  f<sub>eh</sub> to drop by 1/10
- In high- $\beta$  regime, fast electrons heat  $\Rightarrow$  higher stability limit



- Unstable regime has high feh and 40 kV electrons
- Increased gas fueling  $\Rightarrow$  stabilization  $\Rightarrow$  f<sub>eh</sub> to drop by 1/10
- In high- $\beta$  regime, fast electrons heat  $\Rightarrow$  higher stability limit



- Unstable regime has high feh and 40 kV electrons
- Increased gas fueling  $\Rightarrow$  stabilization  $\Rightarrow$  f<sub>eh</sub> to drop by 1/10
- In high- $\beta$  regime, fast electrons heat  $\Rightarrow$  higher stability limit



- Unstable regime has high feh and 40 kV electrons
- Increased gas fueling  $\Rightarrow$  stabilization  $\Rightarrow$  f<sub>eh</sub> to drop by 1/10
- In high- $\beta$  regime, fast electrons heat  $\Rightarrow$  higher stability limit

## **Next Step: Levitation**

- Fast electron losses to supports eliminated
  - Pitch angle scattering reduce anisotropy, not beta
  - Anisotropy driven modes relax plasma without losses
- Bulk plasma confinement also improved
  - Stable fast electron fraction with lower neutral gas fueling ?
- Radial transport driven profiles
  - Single peaked, broader (more stable) profiles
- **Expectation of improved stability and confinement** 
  - Contrast with supported operation will further understanding of unstable/high-β regime bifurcation.

## Summary

- Stable high-beta plasmas are created in LDX
  - Imaging shows highly localized peak near ECRH resonance
  - Magnetic reconstruction gives ~ 20% peak beta
  - Plasma losses are to thin dipole supports
- High beta requires sufficient neutral gas pressure to stabilize hot electron interchange mode
- Demonstrable hysteresis in threshold levels for transition to and from unstable regime

## In case you missed the posters...

## http://www.psfc.mit.edu/ldx

- Alex Boxer
  - Microwave Interferometer
- Jen Ellsworth
  - **X-Ray Measurements**
- Alex Hansen
  - Effect of ECRH Location on Confinement
- Jay Kesner
  - Hot Electron Instability in a Dipole
- Emmanual Mimoun
  - Photodiode Array Measurements
- Eugenio Ortiz
  - Probe Measurements of Electrostatic Fluctuations

## The End

What follows are extra slides that aren't making it into the talk....

## LDX High- $\beta$ Plasma Parameters

- Density
  - ▶ Line average density 1-5 x 10<sup>10</sup> / cc
  - Edge density 0.1-1 x 10<sup>10</sup> / cc
- Temperature
  - Hot-electron energy 100-200 keV (and higher)
  - Edge temperature 10-20 eV
- Pressure
  - Edge 0.01 Pa, Core 500 Pa. --> Ratio ~ 50000
  - Beta (local maximum) ~ 20%
- Confinement
  - Stored energy ~ 400 J with 5 kW input power
  - ▶ τ<sub>E</sub> ~ 80 msec.

# **Controlling HEI Bursts**

- Different run day
  - Wall conditioning not quite so good
- Typical high beta regime
- Many small HEI modes
  - Does not lead to beta collapse
- Marginal stability?



## More gas!

- Same conditions as previous shot
- Large puff at 2.5 s
- Stabilizes small HEI
  - More background density



## **Even more?**

- That did it.
  - But stored energy is reduced due to increased pitch angle scattering of fast electrons



#### **Observed hysteresis in gas fueling at transitions**



- Clear separation between stability onset and loss of stability
- Trend seen with 6.4 GHz power level
  - More power requires more fueling
- Not shown: also trend seen with shaping coil current
   Required gas pressure increases with decreasing plasma size