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Abstract

Gross plasma stability can derive from plasma
compressibility in the bad curvature regions in closed
field line systems such as in a dipole field. In this
situation MHD theory predicts that the maximum
pressure gradient that is stable is proportional to -,
the ratio of specific heats.

We have examined low 3 electrostatic modes us-
ing a kinetic approach in various collisionality regimes
including the collisional regime [1,2], the collision-
less ion regime expected in the LDX experiment and
collisionless ion and electron [3]|, which might be ex-
pected in a reactor. We show that near marginal
stability there is a coupling between the MHD-like
mode and a low frequency “entropy” mode. The
maximum sustainable pressure gradient was found
to be dependent on the ratio of the temperature and
density gradients (n = (n/T)(VT/Vn)) as well as on
the curvature drift frequency. For n = 2/3 the MHD
stability condition is reproduced. When 1 < 2/3 the
mode changes character and the stability criterion
becomes more stringent in all collisionality regimes.

Kesner, Phys Plasmas 7 (2000) 3837.
Simakov, Catto, Hastie, Phys Plas 8, 4414 (2001).
Kesner, Phys Plasmas 5 (1998) 3675.



Kinetic Analysis of low-5 Plasma

e Ideal MHD

Assumes adiabatic eq-of-state with v = 5/3.

Ion FLR and n; = (n;VT;)/(T;Vn;) does not
enter single fluid equations.

MHD — 192 < 9y(ky) or &, < o

p diy

e There are several interesting orderings:

Ideal MHD (short mean free path, collisional)
Q. >VU>Wp > We ~wg ~ W

Long mip collisional

Qe > Wwp > U > We VW~ W

Semi-collisional (expected in LDX)

Qee > Whe > Ve > Wye ~ Wae ~ W

Qei > Whi > W ~ Way ~ W >V

Collisionless (expected in dipole reactor)

Q. > wWp > We~wWyg~wWw> U



Kinetic Analysis

e From DKE obtain f = qoFo. + Jo (k1 p)h.

with the non-adiabatic response, h, determined from:

(w — wq + ivyb- v’) h = —(w—ws)qdFocJo (k1 p)+iC(h)

Assuming high bounce frequency the non-adiabatic
response h = h satisfies

(w—g) ho = — (W — wy) qdJo Foe +iC(hy) (1)

: _ bxk,-V'F,
with w, = T
- - (vﬁg-vg—i—uVB)
Wq = kJ_ b X Q. ,

6= 2L5)/(§ 75) and A = e/n.

e Dispersion relation: Solve for hg, integrate over ve-
locity space, apply quasi-neutrality.



Long mean-free-path Collisional Regime
(Entropy mode)

e For v;,v. > w,w,,wq obtain C(hy) ~ 0. Therefore

ho = on (m/%)g/z ~e/(T4IT) 5 T8

+ (59 R

S5

e Take the flux tube and velocity space average and
assume the collision operator conserves particles and
energy:

[dl/B [ d*vC(h) = [dl/B [ d*v(e —3/2)C(h) = 0.
e We can now integrate Eq. [1] to solve for dn and

0T in terms of “fluid” frequencies,

Tk, xb-Vng

n;msl

w*j —

and &g = LU [ AL (5 + VB/B).
noting w.pi /(wai) = Wwi(1 +1;)/{wai) = —dlnp/dlnv

e For k| p; ~ 0 obtain at marginal stability
[Kesner, Phys Plasmas 7 (2000) 3837]
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1+n

5
d= —
71—%77

(2)

e Gyro-relaxation corrections: Simakov, Catto, Hastie
Phys Plasmas 8, 4414 (2001)

- h1 ~ O(wy/vi;) — introduce “gyro-relaxation”
corrections.

- Proved that mode is flute-like.



Collisionless Tons: Collisional Electrons
(Semi-Collisional) Regime

Likely LDX regime

Collisionless ion response: From Eq. 1

oni _% + % de w—w*¢(1+m(e/T¢—3/2))$F0

; v w—wq; (€,\)
= 7 (=0 + Ai(w, Wi, Was))
e C(Consider particle motion in a point dipole field.

- To obtain correct MHD response approximate

Tiwd (3).

WD

Wai(€, ) =
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Wai(€,\) Approximation

e We can better approximate
Wai(€,\) = %%d}di (1 4+ 6(ABmin —0.4)) to obtain
correction to wy;. Find 0 = 0.12.

For 0 < 1 obtain

0N~ i¢  3rd 1— Bqi¢/TidA .
ErSia it vl sl e 3@ (1—=6(ABynin—0.4))

& similar for electrons. Consider

e Consider quasi-neutrality with ¢ = ¢g+6 ¢1(£)+- -
andd=dyg+9d;+ ---

- Lowest order — flute solution.

- Flux tube average of 2nd order —

dv <gBmm $dt/B?

L= —0.4) ~0.06
dy \3 §d(/B >

e This yields 1 % correction in Eq. 3.



Dispersion Relation - Semi-Collisional Regime

e Include collisional electron response and apply quasi
neutrality:

20 = A;(Q,d,n) + (9)Ae (2, d, ) (4)
with Q = w/dzde, d = Q)*e<1 + n)/@de.

C
€

Taking flux tube average yields: 2 = F; + A

Fi(w) = [ dv Fp e=2eiltn(/Tim3/2)

WT3 T Wdd

e There is a flute eigenmode solution to Eq. 4.

e Dispersion relation can be written in form:

D(w) = % |F1(w) + nFs(w)] — F3(w) = 0.

e There is no marginal stability for w/wg; > 0 and
therefore no ion drift resonances. Thus have coinci-
dent real roots and 9D /0w = 0.

One can show (F5 F3—F3Fy) = —(3/2)(F| F5—F5FY).
Thus obtain

3
(1— 577><F1/F3 — F;F) =0



- Therefore w.,;; = 0.32 @4, and

1+n

d = 0.66 . (5)
1—0.51 7

e (Can evaluate stability numerically. Mathematica
will evaluate error functions.

- Nyquist plot indicates # of roots and stability.

- Zero finder evaluates root.

- For kinetic integrals:

4 (o0 a%e” " day _
o (55t) =

T30 (=3e% + /5 +3e% Bri(\/2 )

NYQUIST PLOT

10



Nyquist plot for stable point; d=-2, n=-0.2
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Semi-collisional Mode




Collisionless Tons and Electrons

Ref. M.N. Rosenbluth, Phys. Fluids 11, 869 (1968).
J. Kesner, Phys Plasmas 5, 3675 (1998).

Rosenbluth considered collisionless isothermal plasma
(n = 0) in closed field line system. No FLR— No
MHD mode.

- If any particles bounce in bad curvature always
find an instability for d > d.,;.

Note - In dipole all bounce in bad curvature.

We consider arbitrary n and both good (d < 0) and
bad (d > 0) curvature.

Collisionless dispersion relation

W—Wxke e 3 -
26 = [ dbp2e (i ”choe

w3wd€

W‘i‘w*e(l‘i_nz(T

+§ dede

+ [ dPv (pFOZ

_Bd)
S(Ae + Ayo) [ 2E=9 (6)
Taking the flux tube average can obtain 2 = A.+Ajg
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Substitute into (6), take flux tube avg to obtain:

$L LD (62 -F) = [, dN@ — (8)?) =0 .

Since gbz — gb > 0 obtain flute like, i.e. ¢ = ¢g to
order k4 p3.

Consider finite k5 p? < 1. Obtain:

—20+ Ay + A{@) + k5 p? A1;(0) =0

We can expand ¢ = ¢g +t91 + ... and w = wy +
t wi +.... Then:

—2¢0 + Ai(¢o) + Acf{dp) =0

and to next order:

—261 + Ai(61) + Ac(dr) + Ari (4, (o)) + 2200 ) 4
%ﬁf (¢o) = 0.
Integrating ¢ d¢/B

W1%[Ai<wO> + Ae(wo)] + fﬁ %A1i<€,w = u}o) = 0.

Th1s gives the shift in w away from wg, caused by
J_pz # 0.
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e Following Rosenbluth look for marginality condition
with Re[w]= Im|w]=0.

SHEE A

e Stability boundary is simzilar but more restrictive
than collisional case.
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The pressure profile maps out a trajectory in (dn) space.

Semi-collisional Mode



Conclusions

e 2 modes are present; MHD-like and drift mode

- MHD mode stable when d < 5/3.

- Drift mode driven by bad curvature (d > 0) and
profile, i.e. 7, effects.

e C(ollisionality is stabilizing; collisionless modes show
larger area of instability.

e Levitated dipole

- In region between the pressure peak and the
wall VI' < 0, Vn, < 0 and therefore n > 0.

- At the pressure peak d =0 and n = —1.

— Between the pressure peak and the internal coil
LDX: VT >0, Vn, >0and d <0, n > 0.
Reactor: VI' >0, Vn. <0Oandd <0, n < —1.

14



Sign-up sheet.

Poster and paper will be available on the www at
www.psfc.mit.edu/ldx/

15



