LP1.057

Drift Frequency Interchange Modes in a Dipole Confined Plasma at Varying Collisionality

J. Kesner, J.E. Hastie
Plasma Science and Fusion Center, MIT
Cambridge, Ma. 02139

2001 APS DPP Meeting

Long Beach, Ca October 31, 2001

Abstract

Gross plasma stability can derive from plasma compressibility in the bad curvature regions in closed field line systems such as in a dipole field. In this situation MHD theory predicts that the maximum pressure gradient that is stable is proportional to γ , the ratio of specific heats.

We have examined low β electrostatic modes using a kinetic approach in various collisionality regimes including the collisional regime [1,2], the collisionless ion regime expected in the LDX experiment and collisionless ion and electron [3], which might be expected in a reactor. We show that near marginal stability there is a coupling between the MHD-like mode and a low frequency "entropy" mode. The maximum sustainable pressure gradient was found to be dependent on the ratio of the temperature and density gradients ($\eta \equiv (n/T)(\nabla T/\nabla n)$) as well as on the curvature drift frequency. For $\eta = 2/3$ the MHD stability condition is reproduced. When $\eta < 2/3$ the mode changes character and the stability criterion becomes more stringent in all collisionality regimes.

Kesner, Phys Plasmas 7 (2000) 3837.

Simakov, Catto, Hastie, Phys Plas 8, 4414 (2001).

Kesner, Phys Plasmas 5 (1998) 3675.

Kinetic Analysis of low- β Plasma

• Ideal MHD

- Assumes adiabatic eq-of-state with $\gamma = 5/3$.
- Ion FLR and $\eta_i \equiv (n_i \nabla T_i)/(T_i \nabla n_i)$ does not enter single fluid equations.

MHD
$$\rightarrow \frac{1}{p} \frac{dp}{d\psi} \le 2\gamma \langle \kappa_{\psi} \rangle$$
 or $\hat{\omega}_{*p} \le \gamma \hat{\omega}_d^{mhd}$

- There are several interesting orderings:
 - Ideal MHD (short mean free path, collisional)

$$\Omega_c > \nu > \omega_b > \omega_* \sim \omega_d \sim \omega$$

- Long mfp collisional

$$\Omega_c > \omega_b > \nu > \omega_* \sim \omega_d \sim \omega$$

- Semi-collisional (expected in LDX)

$$\Omega_{ce} > \omega_{be} > \nu_e > \omega_{*e} \sim \omega_{de} \sim \omega$$

$$\Omega_{ci} > \omega_{bi} > \omega_{*i} \sim \omega_{di} \sim \omega > \nu_i$$

- Collisionless (expected in dipole reactor)

$$\Omega_c > \omega_b > \omega_* \sim \omega_d \sim \omega > \nu$$

Kinetic Analysis

• From DKE obtain $\tilde{f} = q\phi F_{0\epsilon} + J_0(k_{\perp}\rho)h$. with the non-adiabatic response, h, determined from:

$$\left(\omega - \omega_d + iv_{\parallel}\vec{b}\cdot\nabla'\right)h = -(\omega - \omega_*)q\phi F_{0\epsilon}J_0(k_{\perp}\rho) + iC(h)$$

Assuming high bounce frequency the non-adiabatic response $h = h_0$ satisfies

$$(\omega - \overline{\omega}_{d}) h_{0} = -(\omega - \omega_{*}) q \overline{\phi} \overline{J_{0}} F_{0\epsilon} + i \overline{C}(h_{0})$$
(1)
with $\omega_{*} = \frac{\vec{b} \times \vec{k}_{\perp} \cdot \nabla' F_{0}}{m \Omega_{c} F_{0\epsilon}}$
$$\omega_{d} = \vec{k}_{\perp} \cdot \vec{b} \times \frac{(v_{\parallel}^{2} \vec{b} \cdot \nabla \vec{b} + \mu \nabla B)}{\Omega_{c}},$$
$$\overline{\phi} = (\oint \frac{\phi(l) dl}{\sqrt{1 - \lambda B}}) / (\oint \frac{dl}{\sqrt{1 - \lambda B}}) \text{ and } \lambda = \epsilon / \mu.$$

• Dispersion relation: Solve for h_0 , integrate over velocity space, apply quasi-neutrality.

Long mean-free-path Collisional Regime (Entropy mode)

• For $\nu_i, \nu_e \gg \omega, \omega_*, \omega_d$ obtain $\overline{C}(h_0) \approx 0$. Therefore

$$h_0 = \delta n \left(\frac{m/2\pi}{T + \delta T} \right)^{3/2} e^{-\epsilon/(T + \delta T)} \approx \left[\frac{\delta n}{n_0} + \frac{\delta T}{T} \left(\frac{\epsilon}{T} - \frac{3}{2} \right) \right] F_0$$

• Take the flux tube and velocity space average and assume the collision operator conserves particles and energy:

$$\int dl/B \int d^3v \overline{C}(h) = \int dl/B \int d^3v (\epsilon - 3/2) \overline{C}(h) = 0.$$

• We can now integrate Eq. [1] to solve for δn and δT in terms of "fluid" frequencies,

$$\hat{\omega}_{*j} = \frac{T\vec{k}_{\perp} \times \vec{b} \cdot \nabla n_0}{n_j m \Omega}$$
and
$$\hat{\omega}_d = \frac{cT(Rk_{\perp})}{qV} \int \frac{dl}{B^2 R} (\kappa + \nabla B/B).$$
noting
$$\omega_{*pi} / \langle \omega_{di} \rangle \equiv \hat{\omega}_{*i} (1 + \eta_i) / \langle \omega_{di} \rangle = -d \ln p / d \ln \nu$$
and
$$\bar{b} = \langle k_{\perp}^2 T_i / M_i \Omega_i^2 \rangle$$

• For $k_{\perp}\rho_i \sim 0$ obtain at marginal stability [Kesner, Phys Plasmas 7 (2000) 3837]

$$d = \frac{5}{7} \frac{1+\eta}{1-\frac{3}{7}\eta} \tag{2}$$

- Gyro-relaxation corrections: Simakov, Catto, Hastie Phys Plasmas 8, 4414 (2001)
 - $h_1 \sim O(\omega_*/\nu_{ii}) \rightarrow \text{introduce "gyro-relaxation"}$ corrections.
 - Proved that mode is flute-like.

Collisionless Ions: Collisional Electrons (Semi-Collisional) Regime

Likely LDX regime

Collisionless ion response: From Eq. 1

$$\frac{\delta n_i}{n_i} = -\frac{q_i \phi}{T_i} + \frac{q_i}{T_i} \int d^3 v \frac{\omega - \hat{\omega}_{*i} (1 + \eta_i (\epsilon/T_i - 3/2))}{\omega - \overline{\omega}_{di} (\epsilon, \lambda)} \overline{\phi} F_0$$

$$\equiv \frac{q_i}{T_i} (-\phi + \Lambda_i (\omega, \hat{\omega}_{*i}, \hat{\omega}_{di}))$$

- Consider particle motion in a point dipole field.
 - To obtain correct MHD response approximate

$$\overline{\omega}_{di}(\epsilon, \lambda) \approx \frac{2}{3} \frac{\epsilon}{T_i} \hat{\omega}_{di}$$
 (3).

$\overline{\omega}_{di}(\epsilon,\lambda)$ Approximation

• We can better approximate $\overline{\omega}_{di}(\epsilon,\lambda) \approx \frac{2}{3} \frac{\epsilon}{T_i} \hat{\omega}_{di} \left(1 + \delta(\lambda B_{min} - 0.4)\right)$ to obtain correction to $\overline{\omega}_{di}$. Find $\delta = 0.12$.

For $\delta \ll 1$ obtain

$$\frac{\delta n_i}{n_i} \approx -\frac{q_i \phi}{T_i} + \frac{3\tau d}{2} \frac{1-\eta}{1+\eta} \int \frac{B\overline{q_i \phi/T_i} d\lambda}{\sqrt{1-\lambda B}} (1 - \delta(\lambda B_{min} - 0.4))$$

& similar for electrons. Consider

- Consider quasi-neutrality with $\phi = \phi_0 + \delta \phi_1(\ell) + \cdots$ and $d = d_0 + \delta d_1 + \cdots$
 - Lowest order \rightarrow flute solution.
 - Flux tube average of 2nd order \rightarrow

$$\frac{d_1}{d_0} = \left(\frac{2}{3} \frac{B_{min} \oint d\ell/B^2}{\oint d\ell/B} - 0.4\right) \approx 0.06$$

• This yields 1 % correction in Eq. 3.

Dispersion Relation - Semi-Collisional Regime

• Include collisional electron response and apply quasi neutrality:

$$2\phi = \Lambda_{i}(\Omega, d, \eta) + \langle \phi \rangle \Lambda_{e}^{c}(\Omega, d, \eta)$$
with $\Omega = \omega/\hat{\omega}_{de}$, $d = \hat{\omega}_{*e}(1 + \eta)/\hat{\omega}_{de}$.

Taking flux tube average yields: $2 = F_{i} + \Lambda_{e}^{c}$

$$F_{i}(\omega) = \int d^{3}v \ F_{0} \ \frac{\omega - \hat{\omega}_{*i}(1 + \eta_{i}(\epsilon/T_{i} - 3/2))}{\omega - \frac{2}{9} \frac{\epsilon}{m} \hat{\omega}_{di}}$$

$$(4)$$

- There is a flute eigenmode solution to Eq. 4.
- Dispersion relation can be written in form:

$$D(\omega) = \frac{d}{1+\eta} \left[F_1(\omega) + \eta F_2(\omega) \right] - F_3(\omega) = 0.$$

• There is no marginal stability for $\omega/\hat{\omega}_{di} > 0$ and therefore no ion drift resonances. Thus have coincident real roots and $\partial D/\partial \omega = 0$.

One can show
$$(F_2'F_3 - F_3'F_2) = -(3/2)(F_1'F_3 - F_3'F_1)$$
.

Thus obtain

$$(1 - \frac{3}{2}\eta)(F_1'F_3 - F_3'F_1) = 0$$

- Therefore $\omega_{crit} = 0.32 \ \hat{\omega}_{de}$ and

$$d = 0.66 \ \frac{1+\eta}{1-0.51 \ \eta}.\tag{5}$$

- Can evaluate stability numerically. Mathematica will evaluate error functions.
 - Nyquist plot indicates # of roots and stability.
 - Zero finder evaluates root.
 - For kinetic integrals:

$$\frac{4}{\sqrt{\pi}} \int_0^\infty \left(\frac{x^2 e^{-x^2} dx}{y + \frac{2}{3} x^2}\right) = T \sqrt{\frac{3\pi y}{2}} \left(-3 e^{\frac{3y}{2}} + \sqrt{\frac{6}{\pi y}} + 3 e^{\frac{3y}{2}} \operatorname{Erf}(\sqrt{\frac{3}{2}} \sqrt{y})\right)$$

NYQUIST PLOT

Nyquist plot for stable point; d=-2, η =-0.2

Vicinity of axis

Semi-collisional Mode

Collisionless Ions and Electrons

Ref. M.N. Rosenbluth, Phys. Fluids **11**, 869 (1968).

- J. Kesner, Phys Plasmas 5, 3675 (1998).
- Rosenbluth considered collisionless isothermal plasma $(\eta = 0)$ in closed field line system. No FLR \rightarrow No MHD mode.
 - If any particles bounce in bad curvature always find an instability for $d > d_{crit}$.

Note - In dipole all bounce in bad curvature.

- We consider arbitrary η and both good (d < 0) and bad (d > 0) curvature.
- Collisionless dispersion relation

$$2\phi = \int d^3v \frac{\omega - \omega_{*e}(1 + \eta_e(\frac{\epsilon}{T_e} - \frac{3}{2}))}{\omega - \frac{2}{3}\frac{\epsilon}{T}\hat{\omega}_{de}} \overline{\phi} F_{0e}$$

$$+ \int d^3v \frac{\omega + \omega_{*e}(1 + \eta_i(\frac{\epsilon}{T_i} - \frac{3}{2}))}{\omega + \frac{2}{3}\frac{\epsilon}{T}\hat{\omega}_{de}} \overline{\phi} F_{0i}$$

$$= \frac{1}{2}(\Lambda_e + \Lambda_{i0}) \int \frac{Bd\lambda}{\sqrt{1 - \lambda B}} \overline{\phi}$$
(6)

Taking the flux tube average can obtain $2 = \Lambda_e + \Lambda_{i0}$

Substitute into (6), take flux tube avg to obtain:

$$\oint \frac{d\ell}{B} \int \frac{Bd\lambda}{\sqrt{1-\lambda B}} (\phi^2 - \overline{\phi}^2) = \int \tau_b \ d\lambda (\overline{\phi^2} - (\overline{\phi})^2) = 0 \ .$$

Since $\overline{\phi^2} - \overline{\phi}^2 \ge 0$ obtain flute like, i.e. $\phi = \phi_0$ to order $k_{\perp}^2 \rho_i^2$.

• Consider finite $k_{\perp}^2 \rho_i^2 \ll 1$. Obtain:

$$-2\phi + \Lambda_i + \Lambda_e \langle \phi \rangle + k_\perp^2 \rho_i^2 \ \Lambda_{1i}(\ell) = 0$$

We can expand $\phi = \phi_0 + t\phi_1 + \dots$ and $\omega = \omega_0 + t \omega_1 + \dots$ Then:

$$-2\phi_0 + \Lambda_i(\phi_0) + \Lambda_e\langle\phi_0\rangle = 0$$

and to next order:

$$-2\phi_1 + \Lambda_i(\phi_1) + \Lambda_e\langle\phi_1\rangle + \Lambda_{1i}(\ell,\langle\phi_0\rangle) + \frac{\partial\Lambda_i(\phi_0)}{\partial\omega}\omega_1 + \frac{\partial\Lambda_e}{\partial\omega}\omega_1\langle\phi_0\rangle = 0.$$

Integrating $\oint d\ell/B$

$$\omega_1 \frac{\partial}{\partial \omega} [\Lambda_i(\omega_0) + \Lambda_e(\omega_0)] + \oint \frac{d\ell}{B} \Lambda_{1i}(\ell, \omega \equiv \omega_0) = 0.$$

This gives the shift in ω away from ω_0 , caused by $k_{\perp}^2 \rho_i^2 \neq 0$.

• Following Rosenbluth look for marginality condition with $\text{Re}[\omega] = \text{Im}[\omega] = 0$.

$$d = \frac{1}{3} \left[\frac{1+\eta}{1-\eta} \right]. \tag{6}$$

• Stability boundary is *similar* but *more restrictive* than collisional case.

The pressure profile maps out a trajectory in (d,η) space.

Semi-collisional Mode

Conclusions

- 2 modes are present; MHD-like and drift mode
 - MHD mode stable when d < 5/3.
 - Drift mode driven by bad curvature (d > 0) and profile, i.e. η , effects.
- Collisionality is stabilizing; collisionless modes show larger area of instability.
- Levitated dipole
 - In region between the pressure peak and the wall $\nabla T < 0$, $\nabla n_e < 0$ and therefore $\eta > 0$.
 - At the pressure peak d=0 and $\eta=-1$.
 - Between the pressure peak and the internal coil

LDX: $\nabla T > 0$, $\nabla n_e > 0$ and d < 0, $\eta > 0$.

Reactor: $\nabla T > 0$, $\nabla n_e < 0$ and d < 0, $\eta < -1$.

Sign-up sheet.

Poster and paper will be available on the www at www.psfc.mit.edu/ldx/ $\,$