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Abstract

The confining field in the Levitated Dipole Experiment (LDX) is provided by a
1/2 ton levitated superconducting dipole magnet. This floating coil is charged
with 1.5 MA current and will be levitated continuously for the eight hour
experimental run day.

Earnshaw's theorem states that there exists no statically stable configuration for
levitation of magnets. In LDX, the floating coil 1s levitated by a smaller dipole
levitation coil 1.5 meters above. This configuration is unstable vertically, but
stable 1n tilt or horizontal motion.

The position of the coil will be monitored with a set of eight laser position
detectors giving redundant measurements of the five degrees of freedom of the
floating coil.

The levitation will then be stabilized by feedback control of the current in the
levitation coil. The feedback system is a digital system running on a real time
operating system platform. This system 1s programmed, monitored, and
controlled by a second computer using Matlab Simulink. The system 1s currently
being tested on a small model and a larger test is planned before LDX operation.

Results from these tests and optimizations are presented.
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LDX: Experimental Overview

Levitating (L) Coil
e LDX consists 3 major and Cryostat

components:

> a high performance super
conducting floating coil

Floating (F) Coil
and Cryostat

» charging coil
» vacuum vessel

e Other components include

> Plasma heating system (multi-
frequency ECRH)

> Levitation coil

» Control system & coils

» Launcher/Catcher system

» Plasma shaping (Helmholtz) coils Charging (C) Coil 5 m dia Vacuum

_ _ and Cryostat Vessel
» Plasma diagnostic systems



LDX Experiment Cross-Section
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Levitation Control System Schematic
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High T, Superconducting Levitation Coil

SBIR collaboration with American
Superconductor to build first HTS coil
in the fusion community.
Uses 7kmof BSSCO-2223 conductor
» 1128 turns 1-in-hand wound
» 37 Joints
Max field 0.8 Tesla
20 kJ stored energy can be dumped in
<1 second.
Cryostat is cooled with cryocooler
30W cooling capacity at 20° K
Feedback gain selected for 5 Hz
frequency response
» Limit heating to < 20W AC losses

Manufacturing underway at Everson
Electric
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LDX Floating Coil

* Unique high-performance
Nb3Sn superconducting coil
> 1.5 MA-turns, 800 kJ
> 580 kg weight 5:;151;?
> 8 hr levitation |

* Successfully tested

» July 2000: Tested on-site at MIT Radiation
above design current Shield

e Cryostat under construction

Vacuum
Shell




F-Coil Cross-Section
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Optical Position Detection System

 Position/Attitude Sensing
» Occulting system of 8 beams

> Provides measurement of 5 degrees of
freedom of coil with redundancy in each
measurement
> Specification
+ *1 cm detection range
¢ 5 pum resolution
+ 5 kHz frequency response
» Current Status

+ Tests of 1st channel of optical system
performed August 2001

* Rotation Sensing

> Reflecting system to sense final degree of
freedom

» Nonaxisymmetry systematic noise
correction




Digital Control System Schematic

Development

System /
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(control room)
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> All digital process control

Button > Mathworks Matlab/Simulink design
tool and visualization software

» Process control on hard real-time
operating system based computer

e Modular QNX Neutrino based
system Real-time system

» Opal-RT RT-Lab interface to Simulink
with hardware drivers

» Multiple 1/0 boards
+ 32 Analog Inputs

<:> Crowbar
Circuit

e + 16 Analog Outputs
+ 64 Digital 1/0 channels
= Power > 50 kHz maximum hardware
Supplies synchronized loop update rate
o @ > System is upgradable in both number
of channels and processing power




Levitation Physics

We can choose a Lagrangian formulation of the equation of motion so the constraints
above can be easily incorporated:

Ll -1L 12 -mgz

2

Where: |\/|LF = MLF()?1—>5)

F-coil is a superconducting loop, so its flux is
conserved, whereas we can vary the flux in
the L-coil by applying our control voltage:

®_ =M Il +L.I. =constant

And:

@, = Mglel + L1 = [V (Dt




Levitation Physics - Simulink Model

... solving for the magnetic force on the F-coil due to the L-coil in terms
of the flux gives:

_ v (MLF(I)F — LF(I)L)(MLF(I)L — LL(I)F)
(LLLF - MLF2)2
This equation translated to a Simulink model might look like:
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Feedback stabilization

The upward force on the F-coil is proportional to the radial magnetic field at
its position, generated by the L-coil.

> Hence, it is proportional to the current in the L-coil.

Without feedback, the vertical position is unstable because dBR/dz>0, so if
the F-coil moves up, the upward electromagnetic force will increase, and the
coil will move even further up.

If we detect a small increase in vertical position, and decrease the L-coil
current appropriately, we can bring the coil back to its original position.

Simple Approach: Use proportional-integral-derivative (PID) feedback:

IL(t) = IO - aofg(t)dt - alg(t)— azg@)

VAN

Automatic correction to |, Damping term, acts like friction



Feedback: Optimized Voltage PID

Because of the L-coil inductance, we cannot change IL instantaneously. We
can control the voltage=L*dIL/dt, instantaneously (or as fast as the power
supply allows us to change its voltage):

VL (1) = —bye(t) - bye@t) - b e@t)

Include an integral term to automatically adjust for DC losses:

VL) = -b_; [e()dt - bye(t) - by e@t) - b, e@t)

The b parameters are optimized to get the best stabilization:

> Put feedback expression into equation of motion to find most stable, critically
damped solution

Technique used to estimate required currents / voltages for L-coil

Similar technique (using only derivative gain) used to determine required
current for damping Rock & Roll motion using TSR coils

» ~200 Amp turns required...



L-coil Heating

* Heating at 20K dominated by AC losses'!

> F-coil vertical oscillation of 1 mm at 1 Hz = +1 A 1 Hz oscillation in L-coil
current = 20 W heating

e Suppress feedback gains at high frequencies to limit AC losses
> Derivative terms in feedback are particularly noise sensitive
» Very high frequencies (1/w< 15 msec) are shielded by vessel
e Current design for L-coil has cryocooler with 30 W capacity at 20 K

> Finite element analysis ? shows that internal temperature differences can be
kept below 10 K if heating power is less than 100 W

TEPC=5.488 B TEPC=5.25
SMN =20.071 e . SMN =20.4
SMX =21.33 SMX =20.7,
20.071
[ EPNe [ Sgggf
B 50351 B 553
= 50401 = 2356
= 20631 = o459
% 20.771 E 25.61
20.01
= 36 O Sen
T 5119 T og70
15 W M ;33 100 W M 5073

(U J. H. Schultz et al., presented at ASC conference, September 2000
@ R. L. Myatt, Myatt Consulting, Inc.



LCX II: Digitally Controlled Levitation

* Levitated Cheerio Experiment lI

» Uses LDX digital control
system
» LCX | was analog demonstration

* Modified PID feedback system

> Low pass filter added for high
frequency roll-off of derivative
gain
> Integral reset feature for launch
transition
* Dynamic model block replaced
by 1/0 and estimators

* Real-time graph shows position
and control voltage

» Wiggles indicate non-linearly
stable rolling mode...

i@l start H



Basic Simulink Levitation Model
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* This basic model simulates 6 degrees of freedom of F-coil with L-coil
levitation using voltage feedback control.



Basic Levitation Model Results

F-col ZPosition e Control parameters as
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7 > Simulations stay within L-coil
supply specifications

__F-coil Tilt about Y-axis | | e Simulink works!
» Results match previous numercal
simulations
F-coll Vertical Acceleration » Analytic analysis eigenmodes are
1.0 and 0.4 Hz

» Single afternoon of work
* On to implementation!
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System Simulink/Stateflow Model
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L-coil Power Supply Simulation

a2 A
A Y +
Ll
b2 B
Yg g 2 pc
s g B butter
: A a3 —P» pulses V+ * 0] |, |
b3 Universal Bridge ~
»{C IC
o c3 P A g Y Analog
Three-Phase »ls M Rin Filter Design
Transformer L connector \ 4
(Three Windings) p{C »
N
pulses T connector
Universal Bridge1 Y
Y — Ground (input)
alpha_deg -
Gain6

A PY

= JL

C

c
o <
FVvVvY
/xIA
<X ¢

Ub PD
+ + o Block
"va (A Vb . 1 oy Synchronized
12-Pulse Generator
’\/ Ve Uc
ﬂ e stop
- 1 = - 1_/’
= 1 s
Integrator Gain4
-K-{acos
Saturation GainBrigonometrie V demand

Function1

* Model of 12 pulse power supply for L-coil
» Uses Simulink Power System Blockset
> Will upgrade to use Opal-RT Artemis for extensive simulation
* Internal voltage control feedback loop
» Possible to use phase control directly in our completed system



Stateflow diagram of Control System
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State System Simulation

e Complete functional model

» Includes human check wait
states

ree fight »> Automatic failure modes
tested
e Z Position Graph
the coil is lifted up s | > ShOWS IaunCher in aCtion
» Current ramp of L-coil
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More Full Simulation Results
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L-coil supply voltage ripple
» ~ 40 volt ripple
» Current ripple is < 50mA
> No filtering required

Some state machine bugs...



Future Development
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Floating Coil Dynamics

coil voltage output

F-coil state measurement

‘__

Feedback System

Output Point

Optimal Control Theory

» Use Matlab control system
toolbox

» Characterize system
> Develop optimal feedback control
algorithm
Hardware Integration

Testing program

» Use light small aspect ratio
magnet

» optical system calibration
> Integrated supply test

Further algorithmic / state
machine testing



Conclusions

Levitation Control System Design Complete

Control coils designed, specified, and being purchased
> Modern HTS L-coil... first in Fusion research!
» Modest power supply requirements specified

> TSR coil size specified (and very modest)

Digital Control System Under Development
» Computer hardware / software in place

> Several demonstrations / simulations made to show feasibility

Hardware implementation being designed and tested

» 1st channel of optical system under evaluation

Control algorithms under development



