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• WHY IS DIPOLE INTERESTING?

• RESULTS ON MHD AND DRIFT WAVES

• NEW RESULTS ON CONVECTIVE CELLS
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ABSTRACT

The confinement of a plasma in a levitated dipole
has been shown to possess uniquely good properties.
Ideal MHD indicates (1) equilibria at all beta values,
(2) interchange stability when the pressure gradient
does not exceed a critical value and (3) ballooning
mode stability [1]. The stability of drift frequency
modes depends both on the pressure gradient and
the plasma profile and these modes are seen to be
stable for most interesting profiles. Resistive MHD
modes have also been shown to be stable [2]. The-
oretical studies indicate that when the critical pres-
sure gradient for interchange stability is exceeded the
plasma will develop convective cells that can lead to
non-local transport. Pastukhov and Chudin [3] have
developed a set of reduced MHD equations and when
a critical pressure gradient is exceeded the initial
value solutions indicate the formation of convective
cells. By assuming a simple flow pattern and then
calculating the heating source that balances the con-
vective energy transport we have found steady state
solutions to the these equations.

[1] Garnier, Kesner, Mauel, Phys Plasmas 6 (1999)
3431.
[2] Simakov, Catto, Ramos, Hastie, Submitted to
Phys Pl (2002).
[3] Pastukhov and Chudin, Plasma Phys Reports 27
(2001) 907.
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Requirements for “ideal” fusion confinement device.
——————————————————————————

• MHD instability does not destroy plasma, i.e. no
disruptions

• Steady state operation

• High β for economic utilization of field

• High τE (before ignition)

→ Ignition in small device

→ Advanced fuel (DD, D-He) possibility

• Low τp for ash removal

• Low divertor heat load:

Plasma outside of TF coils → large flux expan-
sion.

• Circular, non interlocking coils.

Levitated dipole may fulfill these requirements
if physics “works” and technology does not
introduce new show-stoppers.
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Some Early References

A. Hasegawa, Com on Plasma Phys and Cont Fu-
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A. Hasegawa, L. Chen and M. Mauel, Nuclear Fus.
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Some Recent Dipole Theory References

(MIT, Columbia, IFS, UCLA, UMd, Kurchatov)

• MHD

1a. Garnier, Kesner, Mauel, Phys Pl 6 (1999) 3431.

2a. Krasheninnikov, Catto, Hazeltine, PRL 82 (1999)
2689, and others.

3a. Simakov, Catto, Krasheninnikov, Ramos, Phys
Pl 7 (2000) 2526.

4a. Simakov, Catto, Ramos, Hastie, to be published
in Phys Pl (2002).

• Kinetic theory (Electrostatic)
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1b. Kesner, Phys Plasmas 7 (2000) 3837.

2b. Simakov, Catto, Hastie Phys Plasmas 8, (2001)
395.

3b. Kesner, Hastie, Phys Pl 9, (2002) 4414.

• Kinetic theory (Electromagnetic)

1c. V. Pastukhov and A. Yu. Sokolov, Nuc. Fusion
32 (1992) 1725.

2c. Wong, Horton, Van Dam, Crabtree, Phys Pl 8
(2001) 2415.

3c. Simakov, Hastie, Catto, Phys Pl 9 (2002) 201.

• Non-linear

1d. Tonge, Huang, Leboeuf, Dawson, 2001 APS DPP
(LP1059).

2d. Pastukhov and Chudin, Plasma Physics Report,
27, (2001) 963.

3d. Rey and Hassam, Phys. Plasmas 8, (2001) 5151.
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Summary of Dipole Theoretical Results

• Between pressure peak and wall

MHD stable to interchange when δ(pV γ) ≥ 0.

Stable to MHD ballooning when stable to interchange
[3a, 4a].

Can have weak resistive ballooning mode (γ ∝ γres)
at high beta [4a, Poster KP1.121].

Stable to electrostatic drift modes when stable to
interchange for sufficient ηj [2a, 2b, 2c].

Electrostatic “entropy” mode essentially unchanged
in electromagnetic (high beta) region[2c].

Unstable interchange modes evolve into convective
cells [1d, 2d].

Convective cells transport particles but not neces-
sarily energy [1d, 2d].

Convective cells can lead to non-local energy trans-
port with H-mode-like edge [2d].

• Between Internal Coil and pressure peak (good cur-
vature region)

Can have drift modes when ∇ne ≤ 0 [2b, 2c].
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Stable to all modes when ∇ne > 0 [2b, 2c].

Can have Drift-cyclotron modes but little energy
transport [2d].

Can have convective cells for non-uniform fueling
[3d].
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Is BT necessary for toroidal confinement?

• Bp only→ equilibrium MHD unstable (i.e. FRC)

Two solutions:

(tok, stell, RFP etc) Levitated dipole

Add BT → MHD stable Levitated ring → MHD
from well and shear. stable from compressibility

β << 1 (βp ∼ 1) β > 1 when p′ < p′crit

Drifts off flux surfaces No drift off flux surfaces
→ neoclassical effects

particles trapped in bad No tpm’s but drift modes
curvature →tpm’s possible near ring.

Important Differences

Magnetic shear → Can have convective cells,
No convective cells but without energy transport.

Critical Issues

Divertor Internal ring neutron heat
Steady state Low power density
Disruptions
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Importance of Magnetic Shear

• Closed field line systems lack magnetic shear.
Implications:

MHD

- Shear introduces field-line-bending energy which
is stabilizing.

- In equilibrium for an internal ring device force
balance established between plasma pressure and
field line tension rather than magnetic pressure
(field pulls rather than pushes on plasma) →
bending energy.

- In sheared fields, near rational surface, field can
relax into lower energy state when resistivity is
considered.

Electrostatic modes

- Shear is stabilizing for drift waves but:

- In closed field line systems obtain stabilization
from plasma compressibility.

- In sheared system no plasma compressibility for
passing particles on irrational surfaces.
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Interchange Stability: Rosenbluth-Longmire†

• Closed field line configuration can have “absolute”
well when exchange of flux tubes causes internal plasma
energy (work+compressibility) to increase.

Assume adiabatic eq of state: p/ργ = constant.

∆Ep = δpδV + γp δV
2

V = δS δV
V γ .

V = d(V ol)/dψ =
∮
dl/B, S=entropy fct=pV γ

• For δS > 0 any exchange of flux tubes will increase
plasma energy and damp perturbation.

◦ When ∇p/p < γ∇V/V , MHD perturbation will
damp and vica versa.

◦ For S = const, pcore/pedge = (Vedge/Vcore)γ .

◦ For Dipole pcrit ∝ V −γ → pcrit ∝ r−20/3.

◦ Since B2 ∝ r−6, β = 2µ0pcrit/B
2 ∝ r−2/3

β only decays slowly.

• Microscopically compressibility comes from conser-
vation of adiabatic invariants, µ and J.

† Rosenbluth & Longmire, Ann Phys. 1 (1957) 120.
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MHD: Levitated Dipole

• Consider plasma confined in the field of “floating”
ring:

Similar to planetary magnetosphere but field
lines close through hole in ring → losses across
the field.

• From the point of view of MHD keep in mind:

- No rotational transform, ~B = ~Bp → No shear

- Closed field lines (similar to multipoles)

• Systems with non-rational flux surfaces obtain sta-
bility from “average” well and from shear. Dipole
stabilized by “compressibility”

Early Reference:

Bernstein, Frieman, Kruskal, Kulsrud, Proc. R.
Soc. London, Ser. A, 244 (1958) 17.
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MHD Equilibrium

• No rotational transform: ~J = Jζ~eζ .

Grad-Shafranov equation becomes:

4∗ψ = −µ0RJζ = −µ0R
2 dp

dψ

• Solved by dipole equilibrium code using multi-grid
relaxation method for arbitrary beta [1a].

• Analytic solution also found for point dipole and sub
critical pressure profile[2a]. (Pressure profile chosen
such that β(Z=0)=constant.)

Stability of High-n Ballooning Modes

From MHD Energy Principle can show:

* Curvature drive is destabilizing between pres-
sure peak and outer wall.

* Plasma and magnetic field compressibility and
bending always stabilizing.

Interchange modes stability requirement:
dln p
dψ < 2γ 〈κψ〉

1+γ〈β〉/2
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• Minimize δW to obtain ODE for ballooning stability.

(The properties of closed field line balloon eq was
discussed by Bernstein et al (1958).)

• Ballooning stability

- For LDX equilibrium at marginal interchange
pressure (p ∝ V −γ) and high β (βmax � 1)
have found that that the lowest order odd mode
and all higher modes are stable [Garnier et al].

- Semi-analytic point-dipole equilibrium with sub-
critical pressure gradient; stability for β →∞.

• Bernstein (58) showed lowest order even mode stable
when the interchange mode is stable. (At marginal
stability interchange and ballooning modes coalesce.)

Conclusion: Ideal MHD

• Equilibrium solved analytically and numerically

Dipole exhibits equilibrium all β.

• Maximum β (for a given radial extent of plasma)
obtained by choosing equilibria that are marginally
interchange stable

• High β equilibria found to be stable to high-n bal-
looning modes.
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Convective Cells in large aspect ratio dipole
(i.e. hard-core z-pinch)

• Interchange instability→ Convective cells

• Pastukhov [2d] developed reduced MHD equations
that contain long-time-scale, weak, dissipative terms.

• He shows the following:

Interchange instability leads to large scale convection
with:

⇒ A broad spectrum azimuthal of modes

⇒ Time varying solution (i.e. not a steady state)

• Beginning with Pastukhov equations we do the in-
verse problem.

Assume simple pattern of large scale steady state
convective cells. Calculate:

⇒ Implied plasma pressure profile

⇒ Resulting convective energy transport

This yields the heating profile required for the
assumed flow pattern.
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• Pastukhov equations for a hard core z-pinch.

~B = ~eθB(r) included through the Jacobian
J = π1/2/

∮
dl/B = → J = B(r)/(2

√
πr)

Pressure dependence is simplified through the
use of the entropy variable S = p/Jγ

Small parameter related transport and the MHD
time scales, ε3 ≥ χ/(acs).

Take S(r, z, t) = S(t, r)+S̃(t, r, z) with S̃(t, r, z) ∼
ε2S(t, r).

Assume close to marginality, i.e. → S
′
= 0.

The adiabatic velocity field to be the E × B
velocity, i.e.

va =
1
J

[∇θ ×∇Φ] ∼ (ρi/r)cs ∼ ε cs (1)

with Φ the electrostatic potential.

• Advective terms in the Lagrangian derivatives d/dt =
(∂/∂t + va · ∇) give rise to non-linear acceleration
terms.

d/dt → (va · ∇) will produce zero-frequency modes
that form convective cells.
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Energy equation→ S-equation

• Z-averaged energy equation becomes:

∂S

∂t
= 0 →

c

rJ

d

dr
〈S̃ ∂Φ
∂z
〉−γ − 1

2Jγ
d

dr

(
rρχ

d

dr

(
JγS

ρ

))
=
γ − 1
Jγ

QE

(2)

with 〈f〉 ≡ 1
L

∫ L
0
dz f(r, z)

• Marginal profile (S̃ ∼ 0) balances heating (QE) with
thermal conduction (χ∇(T )).

• Non-linear term 〈S̃Φz〉 yields non-local convective-
cell transport.
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Assuming Q̃E ∼ ε3, the equation for the entropy
function fluctuation, becomes:

∂S̃

∂t
= 0 →

c

rJ

[
Φ, S̃

]
− c

rJ

d

dr
〈S̃ ∂Φ
∂z
〉+ c

rJ

∂Φ
∂z

dS

dr
=
γ − 1
Jγ

Q̃E(r, z)

(3)

with [Φ, f ] ≡ ∂Φ
∂z

∂f
∂r −

∂Φ
∂r

∂f
∂z

Ordinarily when dS/dr < 0 we obtain unstable growth
described by ∂S̃/∂t ∝ −dS/dr.

Near equilibrium the residual drive can be balanced
by the non-linear advection i.e the instability drive
be balanced by a beating of the flow with the pres-
sure perturbation.

• Thus excitation of flows permit an equilibrium with
an otherwise unstable pressure profile near to the
marginally linearly stable state.

• To solve for S̃ set Q̃E(r, z0) = 0. This will determine
Q̃E(r, z) = 0.

17



Following Pastukhov we define a vorticity-like vari-
able:

w = ∇θ · (∇× ρva
J

) = c∇ ·
(
ρ∇Φ
r2J2

)
= c∇ ·

(
∇Φ
c2A

)
(4)

with cA the Alfven speed.

Taking ∇θ ·∇×{(MHD Momentum Equation)/J}
we obtain the resulting steady state vorticity equa-
tion as

∂w

∂t
= 0 → c

r

[
Φ,
w

J

]
+ Jγ−2 dJ

rdr

∂S̃

∂z
≈ 0. (5)

The time rate of change of the vorticity is driven by
the spatially fluctuating part of the entropy function.

18



Consider inverse problem - Guess at simple
flow pattern:

Φ(r, z) = Φ0sin(π
r − rp
rw − rp

)
(
sin(π

z

L
) + sin(2π

z

L
)
)

Using Eq. (4), Φ(r, z) → vorticity, w(r, z).
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Kinetic Analysis of low-β Plasma

Ref: Kesner, Hastie, Phys Plasmas 9 (2002) 395.

• Ideal MHD

- Assumes adiabatic eq-of-state with γ = 5/3.

- Ion FLR and ηi ≡ (ni∇Ti)/(Ti∇ni) does not
enter single fluid equations.

MHD d ≡ d ln p/d ln(
∮
d`/B) < γ or ω̂∗p ≤ γω̂mhdd

• There are several interesting orderings:

◦ Ideal MHD (short mean free path, collisional)

Ωc > ν > ωb > ω∗ ∼ ωd ∼ ω

◦ Long mfp collisional

Ωc > ωb > ν > ω∗ ∼ ωd ∼ ω

◦ “Semi-collisional” (Collisionless Ions, Collisional
Electrons) expected in LDX

Ωce > ωbe > νe > ω∗e ∼ ωde ∼ ω

Ωci > ωbi > ω∗i ∼ ωdi ∼ ω > νi

◦ Collisionless (expected in dipole reactor)

Ωc > ωb > ω∗ ∼ ωd ∼ ω > ν
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• From DKE obtain f̃ = qφF0ε + J0(k⊥ρ)h.

with the non-adiabatic response, h, determined from:(
ω − ωd + iv‖~b · ∇′

)
h = −(ω−ω∗)qφF0εJ0(k⊥ρ)+iC(h).

Assuming high bounce frequency the non-adiabatic
response h = h0 satisfies

(ω − ωd)h0 = − (ω − ω∗) qφJ0F0ε + iC(h0) (6)

with ω∗ = ~b×~k⊥·∇′F0
mΩcF0ε

ωd = ~k⊥ ·~b×
(v2‖
~b·∇~b+µ∇B)

Ωc
,

φ = (
∮ φ(l)dl√

1−λB )/(
∮

dl√
1−λB ) and λ = ε/µ.

• Dispersion relation: Solve for h0, integrate over ve-
locity space, apply quasi-neutrality.
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Long mean-free-path Collisional Regime
(Entropy mode)

• For νi, νe � ω, ω∗, ωd obtain C(h0) ≈ 0. Therefore

h0 = δn
(
m/2π
T+δT

)3/2

e−ε/(T+δT ) ≈
[
δn
n0

+ δT
T

(
ε
T −

3
2

)]
F0

• Take the flux tube and velocity space average and
assume the collision operator conserves particles and
energy:∫
dl/B

∫
d3vC(h) =

∫
dl/B

∫
d3v( εT −

3
2 )C(h) = 0

• For k⊥ρi ∼ 0 obtain at marginal stability [1b]

d =
5
7

1 + η

1− 3
7η

(7)

• h1 ∼ O(ω∗/νii) → “gyro-relaxation” corrections [2b]

26



Collisionless Ions - Collisional Electrons
(Semi-Collisional) Regime

(Likely LDX regime)

Collisionless ion response: From Eq. 1

δni
ni

= − qiφ
Ti

+ qi
Ti

∫
d3v ω−ω̂∗i(1+ηi(ε/Ti−3/2))

ω−ωdi(ε,λ) φF0

≡ qi
Ti

(−φ+ Λi(ω, ω̂∗i, ω̂di))

• Consider particle motion in a point dipole field.

• ωdi(ε, λ) approximation

ωdi(ε, λ) ≈ 2
3
ε
Ti
ω̂di.

• Include collisional electron response and apply quasi
neutrality:

2φ = Λi(Ω, d, η) + 〈φ〉Λce(Ω, d, η)

with Ω = ω/ω̂de, d = ω̂∗e(1 + η)/ω̂de.

• Obtain solution ωcrit = 0.32 ω̂de and

d = 0.66
1 + η

1− 0.51 η
. (8)
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Collisionless Ions and Electrons

• Collisionless dispersion relation

2φ =
∫
d3v

ω−ω∗e(1+ηe( ε
Te

− 3
2 ))

ω− 2
3
ε
T ω̂de

φF0e

+
∫
d3v

ω+ω∗e(1+ηi(
ε
Ti
− 3

2 ))

ω+ 2
3
ε
T ω̂de

φF0i

= 1
2 (Λe + Λi0)

∫
Bdλ√
1−λBφ (9)

Taking the flux tube average can obtain 2 = Λe+Λi0
Substitute into (6), take flux tube avg to obtain:∮
d`
B

∫
Bdλ√
1−λB (φ2 − φ

2
) =

∫
τb dλ(φ2 − (φ)2) = 0 .

Since φ2 − φ
2 ≥ 0 obtain flute like, i.e. φ = φ0 to

order k2
⊥ρ

2
i .

• Following Rosenbluth look for marginality condition
with Re[ω]= Im[ω]=0.

d =
1
3

[
1 + η

1− η

]
. (10)

• Stability boundary is similar but more restrictive
than collisional case.
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Conclusions (Drift modes)

• 2 modes are present; MHD-like and drift mode

- MHD mode stable when d < 5/3.

- Drift mode driven by bad curvature (d > 0) and
profile, i.e. ηj , effects.

• Collisionality is stabilizing; collisionless modes show
larger area of instability.

• Levitated dipole

- In region between the pressure peak and the
wall ∇T < 0, ∇ne < 0 and therefore ηj > 0.

- At the pressure peak d = 0 and ηj = −1.

– Between the pressure peak and the internal coil

LDX: ∇T > 0, ∇ne > 0 and d < 0, ηj > 0.

Reactor: ∇T > 0,∇ne < 0 and d < 0, ηj < −1.
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Implications for Dipole

• Levitated dipole is uniquely simple and unorthodox
approach to plasma confinement.

Inspired by magnetospheric physics observations.
Naturally occurring high-β magnetic confinement.

LDX is first experiment to directly test implica-
tions of stabilization by compressibility.

Test the possibility of near-classical confinement
below beta limit and non-local (convective) trans-
port above limit.

If predictions of high β and τE hold up may lead
to advanced fuel (D-D or D-He3) fusion.

• Dipole area ripe for innovation:

• Coil set is simple; circular and non-interlocking coils.

• Challenging technology issues:

- High TC superconducting coil within plasma.

- Large vacuum chamber → low wall loading.

Poster will be available at the LDX web site:

http://www.psfc.mit.edu/ldx/
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