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Requirements for *“ideal” fusion confinement device.

e MHD instability does not destroy plasma, i.e. no
disruptions

e Steady state operation
e High (3 for economic utilization of field
e High 7 (before ignition)
Ignition in small device
Advanced fuel (DD, D-He) possibility
e Low 7, for ash removal
e Low divertor heat load:

Plasma outside of TF coils — large flux expan-
sion.

e (ircular, non interlocking coils.

Levitated dipole may fulfill these requirements
if physics “works” and technology does not
introduce new show-stoppers.



Is By necessary for toroidal confinement?

e B, only: equilibrium but MHD unstable (i.e.
FRC)

Two solutions:
(tok, stell, RFP etc) Levitated dipole

Add By — MHD stable Levitated ring — MHD
from well and shear. stable from compressibility

<<l (B,~1) # > 1 when p’ <p' .

Drifts off lux surfaces No drift off flux surfaces
— neoclassical effects

particles trapped in bad No tpm’s but drift modes

curvature —tpm’s possible near ring.
Important Differences

Magnetic shear — Can have convective cells,

No convective cells but without energy transport.

Critical Issues

Divertor Internal ring neutron heat
Steady state Low power density
Disruptions



Interchange Stability; Rosenbluth-Longmire!

Closed field line configuration can have “absolute”
well when exchange of flux tubes causes internal plasma
energy (work+compressibility) to increase.

Assume equation of state: p/p? = f(1).
AE, = dpdy + vpg =90ViS/V7.
V =d(Vol)/dip = ¢ dl/B, S=entropy=pV"

For 0S > 0 any exchange of flux tubes will increase
plasma energy and damp perturbation.

o When Vp/p < vVV/V MHD perturbation will
damp and vica versa.

o For § = const, pcore/pedge — <V:edge/‘/core>fy-

o For Dipole perit X V77 = Depir X r—20/3

o Since 32 X T_67 ﬁ — 2N0pcrit/32 X T_2/3

(3 only decays slowly.

(Microscopically compressibility comes from conser-
vation of adiabatic invariants, g and J. )

T Rosenbluth and Longmire, Ann Phys. 1 (1957)
120.



Some Early References

A. Hasegawa, Comments on Plasma Physics and Con-
trolled Fusion, 1, (1987) 147.

A. Hasegawa, L. Chen and M. Mauel, Nuclear Fus.
30, (1990) 2405.

E. Teller, A. Glass, T.K. Fowler et al., Fusion Tech-
nology 22, (1992) 82.

Some Recent Dipole Theory References

(MIT, Columbia, IFS, UCLA, UMd, Kurchatov)

e MHD
la. Garnier, Kesner, Mauel, Phys Pl 6 (1999) 3431.

2a. Krasheninnikov, Catto, Hazeltine, PRL 82 (1999)
2689, and others.

3a. Simakov, Catto, Krasheninnikov, Ramos, Phys
Pl 7 (2000)2526.

e Kinetic theory (Electrostatic)

5



1b. Kesner, Phys Plasmas 7 (2000) 3837.

2b. Simakov, Catto, Hastie Phys Plasmas 8, 4414
(2001).

3b. Kesner, Hastie, to be published in Phys P1 (2002).
e Kinetic theory (Electromagnetic)

lc. V. Pastukhov and A. Yu. Sokolov, Nuc. Fusion
32 (1992) 1725.

2c. Wong, Horton, Van Dam, Crabtree, Phys Pl (8
(2001). 2415.

3c. Simakov, Hastie, Catto, Phys P1 9 (2002) 201.

e Non-linear

1d. Tonge, Huang, Leboeuf, Dawson, 2001 APS DPP
(LP1059).

2d. Pastukhov and Chudin, Plasma Physics Report,
27, (2001) 963.

3d. Rey and Hassam, Phys. Plasmas 8, 5151 (2001).



MHD: Levitated Dipole

e Consider plasma confined in the field of “floating”
ring:

Similar to planetary magnetosphere but field
lines close through hole in ring — losses across

the field.
e From the point of view of MHD keep in mind:

No rotational transform, B = Ep

No shear

Closed field lines (like multipoles)

e Systems with non-rational flux surfaces obtain sta-
bility from “average” well and from shear. Dipole
stabilized by “compressibility”

Early Reference:

Bernstein, Frieman, Kruskal, Kulsrud, Proc. R.
Soc. London, Ser. A, 244 (1958) 17.



MHD Equilibrium

e No rotational transform: J = Jeec.

Grad-Shafranov equation becomes:

dp
A*p = —puoRJ; = —pugR? ==
Y poRJ; 1o 20

e Solved by dipole equilibrium code using multi-grid
relaxation method for arbitrary beta [1].

Use S = const pressure profile (p oc V—7)

e Analytic solution also found for point dipole and sub
critical pressure profile[2].

Pressure profile chosen such that §(Z=0)=constant.
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Stability of High-n Ballooning Modes

From MHD Energy Principle can show:

* Curvature drive is destabilizing between pres-
sure peak and outer wall.

* Plasma and magnetic field compressibility and
bending always stabilizing.

For interchange modes we obtain the requirement:
Py (K )
p < 271+'7<5>/2
e Minimize )W to obtain ODE for ballooning stability.

(The properties of closed field line balloon eq was
discussed by Bernstein et al (1958).)

e Ballooning stability

- For LDX equilibrium at marginal interchange
pressure (p o« V~7) and high 8 (Bmaee > 1)
have found that that the lowest order odd mode
and all higher modes are stable [Garnier et al].

- Semi-analytic point-dipole equilibrium with sub-
critical pressure gradient finds same stability for
B — o0.
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Bernstein et al showed the lowest order even mode
is stable when the interchange mode is stable. (At
marginal stability interchange and ballooning modes
coalesce.)

Conclusion: Ideal MHD

Equilibrium solved analytically and numerically
Dipole exhibits equilibrium all 3.

Maximum 3 (for a given radial extent of plasma)
obtained by choosing equilibria that are marginally
interchange stable

High ( equilibria found to be stable to high-n bal-
looning modes.
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When Vp exceeds Vp.,.;; convective cells form.

Some early references on convective cells:
Dawson and Okuda, PRL 27 (1971) 491.
Nawratil et aol, PF 20 (1977) 157.

With closed field lines pressure and electric
potential tend to be constant on field lines.
This leads to equilibrium variation in flux and
toroidal angle. Convective cells result from:

— Non-symmetric fueling & heating
— Instability, i.e. p’ > pl .,

Pastukhov [2d] solved non-linear fluid equations in-
cluding slow (equilibrium evolution) and fast (MHD)
time scales. Results:

- Inner plasma (coil to pressure peak) has V.S > 0
and is stable.

- Outer plasma exhibits equilibrium with large
convective cells — non local transport.

S ~ 0 from pressure peak to close to plasma
edge edge. Particle convection with small en-
ergy transport.

Pastukov solutions are surprisingly H-mode like.
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Pastukhov solved non-linear fluid equations tfor hard-core pinch
[Pastukhov, Chudin, Pl Phys Reports 27(2001) 907]

Pressure
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Fig. 7. Radial profiles of the entropy sj (solid curve) and
anomaly factor F, (dashed curve).



Kinetic Analysis of low-5 Plasma

e Ideal MHD

Assumes adiabatic eq-of-state with v = 5/3.

Ion FLR and n; = (n;VT;)/(T;Vn;) does not
enter single fluid equations.

MHD — 192 < 9y(ky) or &, < o

p diy

e There are several interesting orderings:

Ideal MHD (short mean free path, collisional)
Q. >VU>Wp > We ~wg ~ W

Long mip collisional

Qe > Wwp > U > We VW~ W

Collisionless Ions, Collisional Electrons
(“Semi-collisional”) expected in LDX

Qee > Whe > Ve > Wie ~ Wde ~ W
Qei > Whi > Wy ~wai ~ W >V,
Collisionless (expected in dipole reactor)

Q. > wWp > We~wWyg~wWw> U
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Kinetic Analysis

Kesner, Hastie, to be published in Phys Pl (2002).
From DKE obtain f = q¢Foc + Jo (k1 p)h.

with the non-adiabatic response, h, determined from:

(w — wq + ivyb- v’) h = —(w—ws)qdFocJo (k1 p)+iC(h)

Assuming high bounce frequency the non-adiabatic
response h = hg satisfies

(w—g) ho = — (W — wy) qdJo Foe +iC(hy) (1)

: _ bxk,-V'F,
with w, = T
- - (vﬁg-vg—i—uVB)
Wq = kJ_ b X Q. ,

6= 2L5)/(§ 75) and A = e/n.

Dispersion relation: Solve for hg, integrate over ve-
locity space, apply quasi-neutrality.
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Long mean-free-path Collisional Regime
(Entropy mode)

e For v;,v. > w,w,,wq obtain C(hy) ~ 0. Therefore

ho = & m/2m 3/2 —e/(TH+0T) ~ _|_5_T<£_§> E
0 = 0N\ 7157 € ~ g T \T T3 0

e Take the flux tube and velocity space average and
assume the collision operator conserves particles and
energy:

[dl/B [ d3vC(h) = [dl/B [ d*v(s — 2)C(h) =0

e We can now integrate Eq. [1] to solve for dn and
07" in terms of “fluid” frequencies,

Tk, xb-Vng

n;msl

w*j —

and &g = LU [ AL (5 + VB/B).

define d = w.pi /(wai) = ©wi(1 +1;)/{wai) = —dInp/dln
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e For k| p; ~ 0 obtain at marginal stability
|Kesner, Phys Plasmas 7 (2000) 3837.]

5 1+n
71—%77

d = (2)

e Gyro-relaxation corrections: Simakov, Catto, Hastie
Phys Plasmas 8, 4414 (2001)

- h1 ~ O(wy/vi;) — introduce “gyro-relaxation”
corrections.

- Mode shown to be flute-like.
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Collisionless Tons - Collisional Electrons
(Semi-Collisional) Regime

(Likely LDX regime)

Collisionless ion response: From Eq. 1

dng _% + % fd3vw_w*i(1+ni(€/Ti_3/2))EFO

; w—wq; (€,\)
= F (=0 + Aiw, @si,w45))
e C(Consider particle motion in a point dipole field.

- To obtain correct MHD response approximate

€

E@di (3).

Wai(€, ) =

WD

e y(e,\) Approximation

We can better approximate
wdi<€, )\) ~ %Tich)dz (1 + 5()\Bmm — O.4>>
to obtain correction to wy;. Find 6 = 0.12.

e This yields 1 % correction stability boundary.
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Dispersion Relation - Semi-Collisional Regime

e Include collisional electron response and apply quasi
neutrality:

20 = Ni(§4,d,m) + (9)AL(Q2,d, n) (4)
with Q = w/dzde, d = Q)*e<1 + n)/@de.
Taking flux tube average yields: 2 = F; 4+ A¢

Fi(w) = [ dv Fp e=2eiltn(/Tim3/2)

WT3 T Wdd

e There is a flute eigenmode solution to Eq. 4.

e Dispersion relation can be written in form:

D(w) = % |F1(w) + nFs(w)] — F3(w) = 0.

e There is no marginal stability for w/wg; > 0 and
therefore no ion drift resonances. Thus have coinci-
dent real roots and at marginality 0D /0w = 0.

One can show (F5 F3—F3Fy) = —(3/2)(F| F5—F5FY).
Thus obtain

3
(1— 577><F1/F3 — F;F) =0
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- Yields solution w,.,;; = 0.32 w4 and

1+n

d = 0.66 .
1—0.51 17

(5)

e (Can evaluate stability numerically. Mathematica
will evaluate error functions.

- Nyquist plot indicates # of roots and stability.

- Zero finder evaluates root.
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Semi-collisional Mode (d=d In p/d In V)
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Collisionless Tons and Electrons

e Rosenbluth [Rosenbluth, Phys. Fluids 11, 869 (1968)]
considered collisionless isothermal plasma (n = 0) in
closed field line system. No FLR— No MHD mode.

- If any particles bounce in bad curvature always
find an instability for d > d.,;.

Note - In dipole all bounce in bad curvature.

e We consider arbitrary 7 and both good (d < 0) and
bad (d > 0) curvature.

e C(ollisionless dispersion relation

W—Wxke e 3 -
26 = [ dpmre e ”beoe

w—g Wde

w—l—w*e(l—i—m(T

3
T fd +§T@de ¢FOZ
= 2(Ac + Ajo) [ \/%5 (6)

Taking the flux tube average can obtain 2 = A.+ A
Substitute into (6), take flux tube avg to obtain:

$U[BA (2 - 3") = [ dA(® — (8)°) =0 .

20




Since ¢? — (bz > 0 obtain flute like, i.e. ¢ = ¢g to
order k4 p3.

e Following Rosenbluth look for marginality condition
with Re[w]= Im|w]=0.

SHEE A

e Stability boundary is simzilar but more restrictive
than collisional case.
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Conclusions (Drift modes)

e 2 modes are present; MHD-like and drift mode

- MHD mode stable when d < 5/3.

- Drift mode driven by bad curvature (d > 0) and
profile, i.e. 7, effects.

e C(ollisionality is stabilizing; collisionless modes show
larger area of instability.

e Levitated dipole

- In region between the pressure peak and the
wall VI' < 0, Vn, < 0 and therefore n > 0.

- At the pressure peak d =0 and n = —1.

— Between the pressure peak and the internal coil
LDX: VT >0, Vn, >0and d <0, n > 0.
Reactor: VI' >0, Vn. <0Oandd <0, n < —1.
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Summary of Dipole Theoretical Results

e Between pressure peak and wall
MHD stable to interchange when §(PV7) > 0

Stable to MHD ballooning when stable to interchange
3a, 4a]

Stable to ES drift modes when stable to interchange
for sufficient n [2a, 2b, 2¢].

ES “entropy” mode esentially unchanged in EM (high
beta) region|2c]

Unstable interchange modes evolve into convective
cells [1d, 2d]

Convective cells transport particles but not neces-
sarily energy [1d, 2d].

Convective cells can lead to non-local energy trans-
port with H-mode-like edge [2d].

e Between Internal Coil and pressure peak (good cur-
vature region)

Can have drift modes when V(n.) < 0 [2b, 2c]
Stable to all modes when V(n.) > 0 [2b, 2c]
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can have Drift-cyclotron modes but little energy trans-
port [2d]

Can have convective cells for non-uniform fueling

[3d]
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Implications for Dipole

e Levitated dipole is uniquely simple and unorthodox
approach to plasma confinement.

Inspired by magnetospheric physics observations.
Naturally occurring high-( magnetic confinement.

LDX is first experiment to directly test implica-
tions of stabilization by compressibility.

Test the possibility of near-classical confinement
below beta limit and non-local (convective) trans-
port above limit.

If predictions of high 3 and 7 hold up may lead
to advanced fuel (D-He3) fusion.

e Dipole area ripe for innovation:
e C(oil set is simple; circular and non-interlocking coils.
e Challenging technology issues:

- High TC superconducting coil within plasma.

- Large vacuum chamber — low wall loading.

Poster will be available at the LDX web site:
http://www.psfc.mit.edu/ldx/
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