Theory of Plasma Confinement in a Levitated Dipole

J. Kesner

Plasma Science and Fusion Center, MIT

D.T. Garnier, A. Hansen, M.E. Mauel Department of Applied Physics, Columbia University

Innovative Confinement Concepts 2002

College Park, Maryland January 23, 2002

Requirements for "ideal" fusion confinement device.

- MHD instability does not destroy plasma, i.e. no disruptions
- Steady state operation
- High β for economic utilization of field
- High τ_E (before ignition)

Ignition in small device

Advanced fuel (DD, D-He) possibility

- Low τ_p for ash removal
- Low divertor heat load:

Plasma outside of TF coils \rightarrow large flux expansion.

• Circular, non interlocking coils.

Levitated dipole may fulfill these requirements if physics "works" and technology does not introduce new show-stoppers.

Is B_T necessary for toroidal confinement?

• B_p only: equilibrium but MHD unstable (i.e. FRC)

Two solutions:

(tok, stell, RFP etc) Levitated dipole

Add $B_T \to \text{MHD stable}$ from well and shear.

$$\beta << 1 \quad (\beta_p \sim 1)$$

Drifts off flux surfaces \rightarrow neoclassical effects

particles trapped in bad curvature →tpm's

Levitated ring \rightarrow MHD stable from compressibility

$$\beta > 1$$
 when $p' < p'_{crit}$

No drift off flux surfaces

No tpm's but drift modes possible near ring.

Important Differences

Magnetic shear \rightarrow No convective cells

Can have convective cells, but without energy transport.

Critical Issues

Divertor Steady state Disruptions Internal ring neutron heat Low power density

Interchange Stability; Rosenbluth-Longmire[†]

• Closed field line configuration can have "absolute" well when exchange of flux tubes causes internal plasma energy (work+compressibility) to increase.

Assume equation of state: $p/\rho^{\gamma} = f(\psi)$.

$$\Delta E_p = \delta p \delta_V + \gamma p \frac{\delta V^2}{V} = \delta V \delta S / V^{\gamma}.$$

$$V = d(Vol)/d\psi = \oint dl/B$$
, S=entropy=p V^{γ}

- For $\delta S > 0$ any exchange of flux tubes will increase plasma energy and damp perturbation.
 - When $\nabla p/p < \gamma \nabla V/V$, MHD perturbation will damp and vica versa.
 - For S = const, $p_{core}/p_{edge} = (V_{edge}/V_{core})^{\gamma}$.
 - For Dipole $p_{crit} \propto V^{-\gamma} \to p_{crit} \propto r^{-20/3}$.
 - Since $B^2 \propto r^{-6}$, $\beta = 2\mu_0 p_{crit}/B^2 \propto r^{-2/3}$ β only decays slowly.

(Microscopically compressibility comes from conservation of adiabatic invariants, μ and J.)

† Rosenbluth and Longmire, Ann Phys. **1** (1957) 120.

Some Early References

- A. Hasegawa, Comments on Plasma Physics and Controlled Fusion, 1, (1987) 147.
- A. Hasegawa, L. Chen and M. Mauel, Nuclear Fus. **30**, (1990) 2405.
- E. Teller, A. Glass, T.K. Fowler et al., Fusion Technology 22, (1992) 82.

Some Recent Dipole Theory References

(MIT, Columbia, IFS, UCLA, UMd, Kurchatov)

• MHD

- 1a. Garnier, Kesner, Mauel, Phys Pl **6** (1999) 3431.
- 2a. Krasheninnikov, Catto, Hazeltine, PRL **82** (1999) 2689, and others.
- 3a. Simakov, Catto, Krasheninnikov, Ramos, Phys Pl **7** (2000)2526.
- Kinetic theory (Electrostatic)

- 1b. Kesner, Phys Plasmas **7** (2000) 3837.
- 2b. Simakov, Catto, Hastie Phys Plasmas 8, 4414 (2001).
- 3b. Kesner, Hastie, to be published in Phys Pl (2002).
- Kinetic theory (Electromagnetic)
 - 1c. V. Pastukhov and A. Yu. Sokolov, Nuc. Fusion 32 (1992) 1725.
 - 2c. Wong, Horton, Van Dam, Crabtree, Phys Pl (8 (2001). 2415.
 - 3c. Simakov, Hastie, Catto, Phys Pl 9 (2002) 201.

• Non-linear

- 1d. Tonge, Huang, Leboeuf, Dawson, 2001 APS DPP (LP1059).
- 2d. Pastukhov and Chudin, Plasma Physics Report, **27**, (2001) 963.
- 3d. Rey and Hassam, Phys. Plasmas 8, 5151 (2001).

MHD: Levitated Dipole

• Consider plasma confined in the field of "floating" ring:

Similar to planetary magnetosphere but field lines close through hole in ring \rightarrow losses across the field.

• From the point of view of MHD keep in mind:

No rotational transform, $\vec{B} = \vec{B}_p$

No shear

Closed field lines (like multipoles)

• Systems with non-rational flux surfaces obtain stability from "average" well and from shear. Dipole stabilized by "compressibility"

Early Reference:

Bernstein, Frieman, Kruskal, Kulsrud, Proc. R. Soc. London, Ser. A, **244** (1958) 17.

MHD Equilibrium

• No rotational transform: $\vec{J} = J_{\zeta}\vec{e}_{\zeta}$. Grad-Shafranov equation becomes:

$$\Delta^* \psi = -\mu_0 R J_{\zeta} = -\mu_0 R^2 \frac{dp}{d\psi}$$

• Solved by dipole equilibrium code using multi-grid relaxation method for arbitrary beta [1].

Use
$$S = const$$
 pressure profile $(p \propto V^{-\gamma})$

• Analytic solution also found for point dipole and subcritical pressure profile[2].

Pressure profile chosen such that $\beta(Z=0)$ =constant.

LDX Equilibria

Vacuum field

max=25

Stability of High-n Ballooning Modes

From MHD Energy Principle can show:

- * Curvature drive is destabilizing between pressure peak and outer wall.
- * Plasma and magnetic field compressibility and bending always stabilizing.

For interchange modes we obtain the requirement:

$$\frac{p_{\psi}}{p} < 2\gamma \frac{\langle \kappa_{\psi} \rangle}{1 + \gamma \langle \beta \rangle / 2}$$

• Minimize δW to obtain ODE for ballooning stability. (The properties of closed field line balloon eq was discussed by Bernstein et al (1958).)

• Ballooning stability

- For LDX equilibrium at marginal interchange pressure $(p \propto V^{-\gamma})$ and high β $(\beta_{max} \gg 1)$ have found that that the lowest order odd mode and all higher modes are stable [Garnier et al].
- Semi-analytic point-dipole equilibrium with subcritical pressure gradient finds same stability for $\beta \to \infty$.

• Bernstein et al showed the lowest order even mode is stable when the interchange mode is stable. (At marginal stability interchange and ballooning modes coalesce.)

Conclusion: Ideal MHD

- Equilibrium solved analytically and numerically Dipole exhibits equilibrium all β .
- Maximum β (for a given radial extent of plasma) obtained by choosing equilibria that are marginally interchange stable
- High β equilibria found to be stable to high-n ballooning modes.

When ∇p exceeds ∇p_{crit} convective cells form.

Some early references on convective cells:

Dawson and Okuda, PRL 27 (1971) 491.

Navratil et al, PF 20 (1977) 157.

- With closed field lines pressure and electric potential tend to be constant on field lines. This leads to equilibrium variation in flux and toroidal angle. Convective cells result from:
 - \rightarrow Non-symmetric fueling & heating
 - \rightarrow Instability, i.e. $p' > p'_{crit}$
- Pastukhov [2d] solved non-linear fluid equations including slow (equilibrium evolution) and fast (MHD) time scales. Results:
 - Inner plasma (coil to pressure peak) has $\nabla S > 0$ and is stable.
 - Outer plasma exhibits equilibrium with large convective cells \rightarrow non local transport.

 $S \sim 0$ from pressure peak to close to plasma edge edge. Particle convection with small energy transport.

Pastukov solutions are surprisingly H-mode like.

Fig. 7. Radial profiles of the entropy s_0 (solid curve) and anomaly factor F_a (dashed curve).

Kinetic Analysis of low- β Plasma

• Ideal MHD

- Assumes adiabatic eq-of-state with $\gamma = 5/3$.
- Ion FLR and $\eta_i \equiv (n_i \nabla T_i)/(T_i \nabla n_i)$ does not enter single fluid equations.

MHD
$$\rightarrow \frac{1}{p} \frac{dp}{d\psi} \leq 2\gamma \langle \kappa_{\psi} \rangle$$
 or $\hat{\omega}_{*p} \leq \gamma \hat{\omega}_{d}^{mhd}$

- There are several interesting orderings:
 - Ideal MHD (short mean free path, collisional)

$$\Omega_c > \nu > \omega_b > \omega_* \sim \omega_d \sim \omega$$

- Long mfp collisional

$$\Omega_c > \omega_b > \nu > \omega_* \sim \omega_d \sim \omega$$

- Collisionless Ions, Collisional Electrons ("Semi-collisional") expected in LDX

$$\Omega_{ce} > \omega_{be} > \nu_e > \omega_{*e} \sim \omega_{de} \sim \omega$$

$$\Omega_{ci} > \omega_{bi} > \omega_{*i} \sim \omega_{di} \sim \omega > \nu_i$$

- Collisionless (expected in dipole reactor)

$$\Omega_c > \omega_b > \omega_* \sim \omega_d \sim \omega > \nu$$

Kinetic Analysis

Kesner, Hastie, to be published in Phys Pl (2002).

• From DKE obtain $\tilde{f} = q\phi F_{0\epsilon} + J_0(k_{\perp}\rho)h$. with the non-adiabatic response, h, determined from:

$$\left(\omega - \omega_d + iv_{\parallel}\vec{b}\cdot\nabla'\right)h = -(\omega - \omega_*)q\phi F_{0\epsilon}J_0(k_{\perp}\rho) + iC(h)$$

Assuming high bounce frequency the non-adiabatic response $h = h_0$ satisfies

$$(\omega - \overline{\omega}_{d}) h_{0} = -(\omega - \omega_{*}) q \overline{\phi} \overline{J_{0}} F_{0\epsilon} + i \overline{C}(h_{0})$$
(1)
with $\omega_{*} = \frac{\vec{b} \times \vec{k}_{\perp} \cdot \nabla' F_{0}}{m \Omega_{c} F_{0\epsilon}}$
$$\omega_{d} = \vec{k}_{\perp} \cdot \vec{b} \times \frac{(v_{\parallel}^{2} \vec{b} \cdot \nabla \vec{b} + \mu \nabla B)}{\Omega_{c}},$$
$$\overline{\phi} = (\oint \frac{\phi(l) dl}{\sqrt{1 - \lambda B}}) / (\oint \frac{dl}{\sqrt{1 - \lambda B}}) \text{ and } \lambda = \epsilon / \mu.$$

• Dispersion relation: Solve for h_0 , integrate over velocity space, apply quasi-neutrality.

Long mean-free-path Collisional Regime (Entropy mode)

• For $\nu_i, \nu_e \gg \omega, \omega_*, \omega_d$ obtain $\overline{C}(h_0) \approx 0$. Therefore

$$h_0 = \delta n \left(\frac{m/2\pi}{T + \delta T} \right)^{3/2} e^{-\epsilon/(T + \delta T)} \approx \left[\frac{\delta n}{n_0} + \frac{\delta T}{T} \left(\frac{\epsilon}{T} - \frac{3}{2} \right) \right] F_0$$

• Take the flux tube and velocity space average and assume the collision operator conserves particles and energy:

$$\int dl/B \int d^3v \overline{C}(h) = \int dl/B \int d^3v (\frac{\epsilon}{T} - \frac{3}{2}) \overline{C}(h) = 0$$

• We can now integrate Eq. [1] to solve for δn and δT in terms of "fluid" frequencies,

$$\hat{\omega}_{*j} = \frac{T\vec{k}_{\perp} \times \vec{b} \cdot \nabla n_0}{n_j m\Omega}$$

and
$$\hat{\omega}_d = \frac{cT(Rk_{\perp})}{qV} \int \frac{dl}{B^2R} (\kappa + \nabla B/B).$$

define
$$d \equiv \omega_{*pi}/\langle \omega_{di} \rangle \equiv \hat{\omega}_{*i}(1+\eta_i)/\langle \omega_{di} \rangle = -d \ln p/d \ln p$$

and
$$\bar{b} = \langle k_{\perp}^2 T_i / M_i \Omega_i^2 \rangle$$

• For $k_{\perp}\rho_i \sim 0$ obtain at marginal stability [Kesner, Phys Plasmas 7 (2000) 3837.]

$$d = \frac{5}{7} \frac{1+\eta}{1-\frac{3}{7}\eta} \tag{2}$$

- Gyro-relaxation corrections: Simakov, Catto, Hastie Phys Plasmas 8, 4414 (2001)
 - $h_1 \sim O(\omega_*/\nu_{ii}) \rightarrow \text{introduce "gyro-relaxation"}$ corrections.
 - Mode shown to be flute-like.

Collisionless Ions - Collisional Electrons (Semi-Collisional) Regime

(Likely LDX regime)

Collisionless ion response: From Eq. 1

$$\frac{\delta n_i}{n_i} = -\frac{q_i \phi}{T_i} + \frac{q_i}{T_i} \int d^3 v \frac{\omega - \hat{\omega}_{*i} (1 + \eta_i (\epsilon/T_i - 3/2))}{\omega - \overline{\omega}_{di} (\epsilon, \lambda)} \overline{\phi} F_0$$

$$\equiv \frac{q_i}{T_i} (-\phi + \Lambda_i (\omega, \hat{\omega}_{*i}, \hat{\omega}_{di}))$$

- Consider particle motion in a point dipole field.
 - To obtain correct MHD response approximate

$$\overline{\omega}_{di}(\epsilon, \lambda) \approx \frac{2}{3} \frac{\epsilon}{T_i} \hat{\omega}_{di}$$
 (3).

• $\overline{\omega}_{di}(\epsilon, \lambda)$ Approximation

We can better approximate $\overline{\omega}_{di}(\epsilon,\lambda) \approx \frac{2}{3} \frac{\epsilon}{T_i} \hat{\omega}_{di} \left(1 + \delta(\lambda B_{min} - 0.4)\right)$ to obtain correction to $\overline{\omega}_{di}$. Find $\delta = 0.12$.

• This yields 1 % correction stability boundary.

Dispersion Relation - Semi-Collisional Regime

• Include collisional electron response and apply quasi neutrality:

$$2\phi = \Lambda_{i}(\Omega, d, \eta) + \langle \phi \rangle \Lambda_{e}^{c}(\Omega, d, \eta)$$
with $\Omega = \omega/\hat{\omega}_{de}$, $d = \hat{\omega}_{*e}(1 + \eta)/\hat{\omega}_{de}$.

Taking flux tube average yields: $2 = F_{i} + \Lambda_{e}^{c}$

$$F_{i}(\omega) = \int d^{3}v \ F_{0} \ \frac{\omega - \hat{\omega}_{*i}(1 + \eta_{i}(\epsilon/T_{i} - 3/2))}{\omega - \frac{2}{5} \frac{\epsilon}{m} \hat{\omega}_{di}}$$

$$(4)$$

- There is a flute eigenmode solution to Eq. 4.
- Dispersion relation can be written in form:

$$D(\omega) = \frac{d}{1+\eta} \left[F_1(\omega) + \eta F_2(\omega) \right] - F_3(\omega) = 0.$$

• There is no marginal stability for $\omega/\hat{\omega}_{di} > 0$ and therefore no ion drift resonances. Thus have coincident real roots and at marginality $\partial D/\partial \omega = 0$.

One can show
$$(F_2'F_3 - F_3'F_2) = -(3/2)(F_1'F_3 - F_3'F_1)$$
.

Thus obtain

$$(1 - \frac{3}{2}\eta)(F_1'F_3 - F_3'F_1) = 0$$

- Yields solution $\omega_{crit} = 0.32 \ \hat{\omega}_{de}$ and

$$d = 0.66 \ \frac{1+\eta}{1-0.51 \ \eta}.\tag{5}$$

- Can evaluate stability numerically. Mathematica will evaluate error functions.
 - Nyquist plot indicates # of roots and stability.
 - Zero finder evaluates root.

Semi-collisional Mode (d=d In p/d In V)

Collisionless Ions and Electrons

- Rosenbluth [Rosenbluth, Phys. Fluids **11**, 869 (1968)] considered collisionless isothermal plasma ($\eta = 0$) in closed field line system. No FLR \rightarrow No MHD mode.
 - If any particles bounce in bad curvature always find an instability for $d > d_{crit}$.

Note - In dipole all bounce in bad curvature.

- We consider arbitrary η and both good (d < 0) and bad (d > 0) curvature.
- Collisionless dispersion relation

$$2\phi = \int d^3v \frac{\omega - \omega_{*e}(1 + \eta_e(\frac{\epsilon}{T_e} - \frac{3}{2}))}{\omega - \frac{2}{3}\frac{\epsilon}{T}\hat{\omega}_{de}} \overline{\phi} F_{0e}$$

$$+ \int d^3v \frac{\omega + \omega_{*e}(1 + \eta_i(\frac{\epsilon}{T_i} - \frac{3}{2}))}{\omega + \frac{2}{3}\frac{\epsilon}{T}\hat{\omega}_{de}} \overline{\phi} F_{0i}$$

$$= \frac{1}{2} (\Lambda_e + \Lambda_{i0}) \int \frac{Bd\lambda}{\sqrt{1 - \lambda B}} \overline{\phi}$$
(6)

Taking the flux tube average can obtain $2 = \Lambda_e + \Lambda_{i0}$ Substitute into (6), take flux tube avg to obtain:

$$\oint \frac{d\ell}{B} \int \frac{Bd\lambda}{\sqrt{1-\lambda B}} (\phi^2 - \overline{\phi}^2) = \int \tau_b \ d\lambda (\overline{\phi^2} - (\overline{\phi})^2) = 0 \ .$$

Since $\overline{\phi^2} - \overline{\phi}^2 \ge 0$ obtain flute like, i.e. $\phi = \phi_0$ to order $k_{\perp}^2 \rho_i^2$.

• Following Rosenbluth look for marginality condition with $\text{Re}[\omega] = \text{Im}[\omega] = 0$.

$$d = \frac{1}{3} \left[\frac{1+\eta}{1-\eta} \right]. \tag{6}$$

• Stability boundary is *similar* but *more restrictive* than collisional case.

Conclusions (Drift modes)

- 2 modes are present; MHD-like and drift mode
 - MHD mode stable when d < 5/3.
 - Drift mode driven by bad curvature (d > 0) and profile, i.e. η , effects.
- Collisionality is stabilizing; collisionless modes show larger area of instability.
- Levitated dipole
 - In region between the pressure peak and the wall $\nabla T < 0$, $\nabla n_e < 0$ and therefore $\eta > 0$.
 - At the pressure peak d=0 and $\eta=-1$.
 - Between the pressure peak and the internal coil

LDX: $\nabla T > 0$, $\nabla n_e > 0$ and d < 0, $\eta > 0$.

Reactor: $\nabla T > 0$, $\nabla n_e < 0$ and d < 0, $\eta < -1$.

Summary of Dipole Theoretical Results

• Between pressure peak and wall

MHD stable to interchange when $\delta(PV^{\gamma}) \geq 0$

Stable to MHD ballooning when stable to interchange [3a, 4a]

Stable to ES drift modes when stable to interchange for sufficient η [2a, 2b, 2c].

ES "entropy" mode esentially unchanged in EM (high beta) region[2c]

Unstable interchange modes evolve into convective cells [1d, 2d]

Convective cells transport particles but not necessarily energy [1d, 2d].

Convective cells can lead to non-local energy transport with H-mode-like edge [2d].

• Between Internal Coil and pressure peak (good curvature region)

Can have drift modes when $\nabla(n_e) \leq 0$ [2b, 2c]

Stable to all modes when $\nabla(n_e) > 0$ [2b, 2c]

can have Drift-cyclotron modes but little energy transport [2d]

Can have convective cells for non-uniform fueling [3d]

Implications for Dipole

• Levitated dipole is uniquely *simple* and *unorthodox* approach to plasma confinement.

Inspired by magnetospheric physics observations. Naturally occurring high- β magnetic confinement.

LDX is first experiment to directly test implications of stabilization by compressibility.

Test the possibility of near-classical confinement below beta limit and non-local (convective) transport above limit.

If predictions of high β and τ_E hold up may lead to advanced fuel (D-He3) fusion.

- Dipole area ripe for innovation:
- Coil set is simple; circular and non-interlocking coils.
- Challenging technology issues:
 - High TC superconducting coil within plasma.
 - Large vacuum chamber \rightarrow low wall loading.

Poster will be available at the LDX web site: http://www.psfc.mit.edu/ldx/