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Abstract. Feedback control is an important tool in fusion devices because
it can lead to the control of instabilities and the optimization of plasma
equilibria. For the Levitated Dipole Experiment (LDX), steady levitation of
the floating superconducting coil requires an additional feedback control
system. In this abstract, the active feedback control of the LDX floating
coil is used to illustrate various digital algorithms for noise reduction and
dynamical tracking. In particular, the recursive filter, now known as the
“Kalman filter”, is shown to be suitable for tracking the position, velocity,
and acceleration of the floating coil. Using the measured power supply and
known coil parameters, an adaptive Kalman filter is described that meets
the requirements for levitation control. In addition, illustrations of the use of
the Kalman filter for plasma instability control (like the resistive wall mode)
are described.
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• A real-time feedback control system (see Austin Roach, Tuesday after-
noon’s “Undergraduate Poster Session”, [FP1.039] ) will provide the
safe and accurate positioning of the f-coil by controlling the currents in
the superconducting l-coil and eight copper saddle coils.

• The l-coil acceptance tests were completed by Phil Michaels in the
Summer of 2003. An analytical model was developed that includes
inductive coupling to eddy currents flowing in the copper support plate.
These eddy currents change the time-response of the levitation field
to changing control voltages applied to the l-coil.

The question answered in this poster,“How should the LDX f-
coil feedback control algorithm change as a result of the l-coil
test data?”
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Results and Summary

• Simple simulations of vertical feedback control that incorporate the
new analytical model for the l-coil only slightly modify design require-
ments for the f-coil feedback controller.

• Because feedback control requires measurement of the f-coil’s velocity
and acceleration, noise immunity requires careful filter design .

• A Kalman filter is demonstrated, and this filter meets LDX require-
ments .

• Simulations of “loss-of-control” accidents also show that previous de-
signed protective measures will be adequate .
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Dynamical Equations for Inductive Feedback Control for
the Vertical Motion of F-Coil
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V = Gpz
m + Gd

dzm
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+ Gd2

d2zm

dt2
(4)

The three gain parameters are used to (i) define the equilibrium location, Gp, (ii) stabilize
vertical displacements, Gd, and (iii) damping vertical oscillations, Gd2. They translate
measurements of the f-coil position, zm ≈ z, into the control voltage, V , applied to the
l-coil.
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Definitions in Dynamical Equations for Inductive
Feedback Control for the Vertical Motion of F-Coil

• c ≈ 1 is the normalized levitation field

• LlI0 ≈ 680 Volt·sec is the self-flux linked by the levitation coil at equilibrium.

• Eq. 3 represents an “ideal” l-coil magnet and power supply prior to Phil Michael’s
tests.

• Without feedback, the linear unstable growth rate for vertical displacements is γ, and
the (weak) axial variation of the levitation force is expressed above as a Taylor series.
For our base-case equilibrium (with the f-coil charged to 1.18 MA·turns, 103.7 A in
the l-coil, and 16 A in the c-coil), γ = 3.8 s−1 when c ≈ 1.

• For these calculations, we used 1500 lb, but now we’ve measured the final f-coil
mass: 550 kg (1212 lb). Less levitation current is required.

• The weak axial variation is parameterized with (dz1, dz2, dz3) ≈ (51,82,86) cm.

• The swing frequency for tilt motion is 0.9 Hz and for slide motion is 0.42 Hz. Tilt and
slide swings are stable provided the f-coil is not less than 29 cm below nominal.
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• These equations ignore f-coil flux conservation and dynamical coupling between f-
coil degrees of freedom since these effects are not important for small displace-
ments. Other equilibrium field configurations will have slightly different dynamical
frequencies.

With zm = z, the close-loop f-coil dynamics is described with a three-pole system

d3z

dt3
=

g

LlI0

[
Gpz +

(
Gd + γ2LlI0

g

)
dz

dt
+ Gd2

d2z

dt2

]
(5)

When Gp = 0, the conditions for stability are easily solved. The derivative gains must
satisfy

ηfb ≡ (−Gd2)
g

2LlI0
> 0 (6)

ω2
fb ≡ (−Gd)

g

LlI0
− γ2 − η2

fb > 0 (7)

where ηfb is the closed-loop damping rate for f-coil displacements, ωfb is the closed-loop
vertical oscillation frequency. With LlI0/g ≈ 0.7 Volt·s/(cm s−2), the “acceleration gain”
must be (−Gd2) = 1.4 to give ηfb = 1 s−1. Stability requires the “velocity gain” (i.e.
derivative gain) to be (−Gd) ≥ 10.8 for this settling rate. When we add a small amount of
proportional gain (in order to define the equilibrium f-coil position), an acceptable closed-
loop response is (Gp, Gd, Gd2) = (−1.0,−12.0,−1.7). This results in three damped
modes with ηfb > 0.65 s−1 (and some residual oscillations with ωfb/2π ≈ 0.13 Hz.)



The Need for Noise Reduction

• Derivative gain is highly susceptible to noise.

• The measured f-coil position must be filtered to keep the control volt-
age on the l-coil power supply to be be well within limits, ±150 V.

• Voltage fluctuations cause small current oscillations that heat the l-coil.

These can minimized by filtering the output voltage of the feedback con-
troller or by filtering the measurement data. The previous approach taken
for an “ideal” L-coil was to apply the filter to the measurements.
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Example Digitial Controller with Simple Averaging

For example, a digital controller with a sample period and latency both equal to δt = 1
ms. The measured positions of the f-coil (recorded at the beginning of each sample
period) are zm

n . Single pole filters are used to compute the position, z̄n, velocity v̄n, and
acceleration, ān, used to output a voltage, Vn+1 = Gpz̄n + Gdv̄n + Gd2ān, applied at the
end of the sample period. Digital filters with unity DC gain are

z̄n = z̄n−1 +
δt

τz
(zm

n − z̄n−1) (8)

v̄n = v̄n−1 +
δt

τv

(
(z̄n − z̄n−1)

δt
− v̄n−1

)
(9)

ān = ān−1 +
δt

τa

(
(v̄n − v̄n−1)

δt
− ān−1

)
(10)

Integration times were equal to τz/δt = τv/δt = 20 and τa/δt = 50. With zm
n equal to

the actual f-coil position plus “white noise” with a magnitude of ±20 µm, the noise caused
the output voltage to fluctuate about ±3 V, and this drove fluctuations of the l-coil current
at ±10 mA. The power spectrum of the simulated l-coil current fluctuations are shown
in Fig. 1. (If the filters shown in Eqs. 8-10 are removed, the voltage fluctuations are are
approximately ±5 kV!)
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Figure 1

The DFT power spectrum from a simulation of the current fluctuations from
an “ideal ” l-coil due to ±20 µm random measurement noise. The fluctua-
tions of the l-coil current were acceptable: ±10 mA.



The Empirical L-Coil Model

The measured response of the LDX l-coil to a voltage change couples the current through
the superconductor to eddy currents in the support plate and currents passing through a
short in the coil’s insulation. The l-coil model is V

0
0

 =

 Ll Mls Mlp

Mls Ls Msp

Mlp Msp Lp

·
 İl

İl + İs

İp

+

 Ql −Rs Rs 0
0 Qs + Rs 0
0 0 Rp

·
 Il

Il + Is

Ip


where Ql and Qs represent frequency dependent loss factors empirically determined from
the AC l-coil test.

The levitation field results from the l-coil current, Il, shielded by eddy currents in the
support plate, Ip, and by eddy currents in the LDX vacuum chamber. Eq. 3 must be
modified to incorporate these effects. Defining cvac to be the control field at the f-coil in
the absence of the LDX vacuum vessel, and setting τvac ∼ 15 ms (e.g. the value from the
SPARK code), the new dynamical control equation is

c = cvac − τvac
dc

dt
=

Il

I0
+

2Ip

2796I0
− τvac

dc

dt
(11)

where we used the number of turns in the l-coil (2796) and the effective “turns” in the
support plate (2, for both sides) is used to compute Cvac.
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Since Lp/Rp ≈ 0.3 s is comparable to time-scales of interest, analysis of l-coil response
is best done numerically. Nevertheless, it is useful to note the inductive limit of Eq. 11
when Ip ≈ −IlMlp/Lp = −1016Il. In this case, an “equivalent” to Eq. 3 can be written
as

dc

dt
≈

V

LlI0

1− 2Mlp/2796Lp

1−M2
lp/LlLp

− τvac
d2c

dt2
(12)

On the ∼ 0.1 s time-scale, the voltage required to change the control flux changes
only slightly: from ∼ 680 Volt·sec for a “bare” l-coil to ∼ I0Ll (1 − M2

lp/LlLp)/(1 −
2Mlp/2796Lp) ≈ 335 Volt·sec for a “real” coil.

On slightly longer time scales,∼ Lp/Rp, the l-coil control flux, cvac, is partially proportional
to the l-coil voltage. The plate eddy currents act to “integrate” the l-coil current. The
fact that V ∝ cvac (instead of dcvac/dt) over some time-scales necessitates additional
proportional gain, Gp, for closed-loop stability.



Simple Digitial Controller with Time-Averaging Fails

The Laplace transform of Eqs. 1, 2, 4, 11, and 12 gives six poles (and one unstable
mode, exp(γt), when Gp = Gd = Gd2 = 0.) The same gain vector discussed previ-
ously, (Gp, Gd, Gd2) = (−1.0,−12,−1.7), stabilizes the f-coil using a “real” l-coil, but
damps vertical displacements about 5 times more slowly, ηfb > 0.11 s−1. Adjusting
the gain vector with additional proportional gain, decreases the the settling time. When
(Gp, Gd, Gd2) = (−10,−17,−3.0), then ηfb > 0.5 s−1. The primary consequence of
the support plate eddy currents is to require an increase in the gain vector.

If the digital controller discussed in the previous section is employed with the new gain
vector and “real” l-coil model, the performance deteriorates. With δt = 1 ms and a f-coil
position noise of ±20 µm, the fluctuation in the l-coil current increases nearly 10-fold to
±91 mA. The fluctuating l-coil current power spectrum is shown in Fig. 2, illustrating both
the increased noise amplitude and bandwidth. Additionally, the higher gain vector and
larger number of (stable) poles makes the translation from the Laplace transform (analog)
response to the digital (Z transform) response more problematic. For this example con-
troller, the vertical displacements were underdamped–even though the analog response
was nearly critical.
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Figure 2.

The DFT power spectrum from a simulation of the l-coil current fluctuations
including the effects from plate eddy currents, the l-coil short, and vacuum
vessel eddy currents. The current fluctuations increased significantly
(from Fig. 1) to ±91 mA.
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Rudolf Emil Kalman (May 19, 1930 -) is most famous for his invention of
the Kalman filter, a mathematical digital signal processing technique widely
used in control systems and avionics to extract meaning (a signal) from
chaos (noise).

Kalman’s ideas on filtering were initially met with scepticism. He had more success in
presenting his ideas, however, while visiting Stanley Schmidt at the NASA Ames Research
Center in 1967. This led to the use of Kalman filters during the Apollo program.

He was born in Budapest, Hungary. He obtained his bachelor’s (1953) and master’s
(1954) degrees from MIT in electrical engineering. His doctorate (1957) was from Columbia
University. His worked as Research Mathematician at the Research Institute for Advanced
Study, in Baltimore, from 1958-1964, Professor at Stanford University from 1964-1971,
and Graduate Research Professor, and Director, at the Center for Mathematical System
Theory, University of Florida, Gainesville from 1971 to 1992. Starting in 1973, he simulta-
neously filled the chair for Mathematical System Theory at the Swiss Federal Institute of
Technology, (ETH) Zurich.

He received the IEEE Medal of Honor (1974), the IEEE Centennial Medal (1984), the
Inamori foundation’s Kyoto Prize in High Technology (1985), the Steele Prize of the Amer-
ican Mathematical Society (1987), and the Bellman Prize (1997).

He is a member of the National Academy of Sciences (USA), the National Academy of
Engineering (USA), and the American Academy of Arts and Sciences (USA). He is a
foreign member of the Hungarian, French, and Russian Academies of Science. He has
many honorary doctorates.
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The Kalman Filter

A simple Kalman filter can remove most of the measurement noise of the f-coil position
and allow straight-forward application of the gain vector during position feedback control.
The Kalman filter is applied in two steps: the “prediction” or time update step and the
“correction” or measurement update step.

For the f-coil control problem, I choose to model the “state” of the f-coil’s position with a
vector xn ≡ {zn, zn−1, zn−2}, where zn is the vertical position during the nth time-sample
of the digital controller. The “prediction” step is an internal model describing how the f-coil
advances one time-step from xn to xn+1. A second-order accurate state map is

xn+1 =

 zn+1

zn

zn−1

 =

 γ2δt2 + 2 −1 0
1 0 0
0 1 0

 ·

 zn

zn−1

zn−2

+

 gδt2(Il(n)/I0 − 1)
0
0


≡ A · xn + un

where Il(n)/I0 is the measured normalized current in the l-coil, and A is called the “pro-
cess matrix”.

The “correction” step involves computation of the “Kalman gain”, Kn and using this matrix
to weight the residual between the prediction and the measurement, zm

n , of the f-coil. The
Kalman gain is computed recursively along with the “estimate error covariance”, Pn. The
estimate error covariance is related to the degree that measurement fluctuations differ
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from the internal state vector. The Kalman gain is the matrix that minimizes on average
the corrected error covariance.

In order to compute the Kalman gain, the relationship between the state vector, xn, and
measurement needs to be defined. In this example, the relationship is trivial. If zm

n ≡
{zm

n , zm
n−1, z

m
n−2}, then xn = H · zm

n , with H equal to the identity matrix.

The two-step Kalman filter can now be defined. The “prediction” step is

x∗n = A · xn−1 + un (13)

P∗
n = A ·Pn−1 ·AT + Q (14)

where x∗n and P∗
n are predictions of the next step state vector and error covariance. (The

matrix Q is user-defined parameter for the intrinsic noise in the f-coil dynamics (for exam-
ple, due to fluctuating stray fields in the cell or to vibrations of the f-coil vessel with respect
to its conductor). For the simulations described here, I took Q to be small: the identity
matrix ×10−5.) The “correction” step is

Kn = P∗
n ·HT · (H ·P∗

n ·HT + R)−1 (15)
xn = x∗n + Kn · (zm

n −H · x∗n) (16)
Pn = (I−Kn ·H) ·P∗

n (17)

With H = HT = I Eqs. 18-20 are especially simple. Even with a more complicated mea-
surement matrix (e.g. when we use multiple laser detectors to simultaneously measure
tilt, slide, and vertical position), these equations are less complicated than the sequential
application of single-pole digital filters used in the example of the previous section.



The “Correction” Step and Control Computation

The “correction” step contains the important matrix, R, called the “measurement noise
covariance ” matrix. This matrix is used by the filter designer to control the evolution of
the state vector. When R is large, the process state is less sensitive to noise fluctuations.
When R is small, the state vector’s response is more sensitive to measurement noise. For
the simulations I performed, I took R to be the identity matrix times a single parameter.
This is appropriate if the noise for each measurement is independent or each other.

The final step in the digital controller is to compute the control voltage to be applied to the
l-coil power supply. A second order formula is

Vn =
(

Gp Gd Gd2

)
·

 1 0 0
1/δt −1/δt 0
1/δt2 −2/δt2 1/δt2

 · xn (18)
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Figure 3. Simulation of F-coil position control using a digital controller and
a Kalman filter. (“Wow! ”)
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Figure 4.

The DFT of the l-coil current fluctuations from a simulation of the digital
control of f-coil using a Kalman filter with R = I× 1.
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Figure 5.

The DFT of the l-coil current fluctuations from a simulation of the digital
control of f-coil using a Kalman filter with R = I × 0.1. The l-coil current
fluctuations have increased to ±29 mA.
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Simulations show Kalman filter meets our requirements

Fig. 3 shows the response of the f-coil and the feedback system following
an “instantaneous” step in the f-coil velocity. At t = 0, the f-coil’s upward
velocity is set to be 1 cm/s. The controller operated with a sample period
of δt = 5 ms, and the tuning parameter was set to unity: R = I × 1.
The f-coil returned to equilibrium in about 5 s, comparable to the response
obtained with an ideal analog controller. The steady fluctuations of the l-coil
current had a standard deviation of ±19 mA, but with a power spectrum
dominated by low-frequencies, < 1 Hz, as shown in Fig. 4. With these
filter/controller settings, the l-coil current fluctuations are nearly the same
as obtained with a “bare” l-coil (shown in Fig. 1.) If the tuning parameter is
made smaller, R = I× 0.1, then the l-coil current fluctuations increase to
±29 mA, and the power-spectrum has higher-frequency components, as
shown in Fig. 5.
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Loss of Control Accidents

• Another important requirement for the l-coil levitation system is rapid
dump of the l-coil current in the event of a loss-of-control accident.
The l-coil current must decrease sufficiently fast to prevent the upward
acceleration of the f-coil to the l-coil.

• Simulations of loss-of-control accidents when a 2.5 Ω dump resistor is
connected with the l-coil power supply. The f-coil response is essen-
tially unchanged between a “bare” (Ll = 6.6 H) and “real” l-coil. The
bottom two figures show the l-coil voltage and currents.
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Figure 6. Comparison of the response of the f-coil during an example “loss-of-control”
accident for a “bare” l-coil and a “real” l-coil. The f-coil is set to have an upward velocity
of 1 cm/s, and the feedback controller is assumed to have failed. The “bare” coil has
an inductance of 6.6 H; whereas, the effective inductance of the “real” coil is lower. The
voltage on the l-coil power supply is initially zero. When the f-coil has moved upward by
1 cm, the l-coil is dumped through a 2.5 Ω resistor after a trigger delay of 35 ms. In Phil
Michael’s model, the resistance of the short, Rs, increases from 0.15 Ω to 1.5 Ω. Fig. 6
shows that the f-coil response remains essentially unchanged with the new l-coil model.
If the f-coil is caught after falling to −30 cm, a constant 5-g catching force stops the f-coil
in 2.4 cm after 31 ms.
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Summary

• Vertical dynamics of the f-coil was re-examined using the empirical
model of the actual l-coil.

• Using computer simulations, an active feedback controller using an
adaptive Kalman filter was described that meets our requirements.

• Simulations of possible “loss-of-control” accidents shows that plans
to dump the current in a “real” l-coil with 2.5 Ω resistor will prevent
excessive upward motion of the f-coil.
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