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ABSTRACT

Theory predicts that the closed field line geometry
of a levitated dipole configuration can support MHD
stable plasmas at high beta values when the pressure
gradient does not exceed a critical value. For suffi-
ciently strong heating this stability limit would be
violated and we expect instability to develop, lead-
ing non-linearly to the formation of convective cells.
The NIMROD code [1] permits the study of the non-
linear development of MHD modes, including resis-
tive effects. NIMROD simulations have been per-
formed for the LDX geometry. The simulations in-
dicate the onset of MHD activity for sufficient heat-
ing power and for realistic (non ideal) heating pro-
files. After the onset of instability a toroidal mode
number, n=1 mode is seen to dominate transport
and to spread the plasma radially so that the pres-
sure approaches the marginal profile. Later in time
the amplitude of the modes decrease, the spectrum
broadens (dominated by 10 < n < 20) and the pres-
sure profile approaches the marginal state.

[1] C.R. Sovinec and the Nimrod team, Journal of
Computational Physics, Vol. 195, p. 355 (2004).



MHD Equilibrium and Stability of a Dipole

e MHD Equilibrium: Equilibrium is obtained for all
(. At high @ plasma expands in midplane.

Free boundary equilibrium: Ref: Garnier, Kesner,
Mauel, Phys Plasmas 6 (1999) 3431.

Analytic equilibrium for point dipole: Krashenin-
nikov, Catto, Hazeltine, PRL 82 (1999) 2689.

o Ideal Stability:

- Interchange stability when §(pV?Y) > 0 with
V= §dl/B.

Early Refs: Rosenbluth & Longmire, Ann Phys.
1 (1957) 120.

Bernstein, Frieman, Kruskal, Kulsrud, Proc. R.
Soc. London, Ser. A, 244 (1958) 17.

- Ballooning modes

Ballooning modes stable when interchange modes
stable: Garnier et al, Ibid.

e Resistive MHD: Can have weak resistive mode v
n, but the v o< n'/3 mode is not present.

Ref: Simakov, Catto, Ramos, Hastie, Phy P1 9
(2002) 4985.



Heating Experiments in LDX

e 3 KW ECRH at 2.45 and at 6.4 GHz

Typical Shot 40917012: Observe the following;

During first 200 ms the plasma is quiet. Dia-
magnetism and x-ray intensity rises.

After t=200 ms

Noise on Mirnov coil (magnetic pickup coil) be-
comes significant

Diamagnetic signal changes slope.

Edge Langmuir ion saturation current goes from
negative to positive.

Diamagnetism drop (3 collapse 7) observed later
in time (t~1.5 s) and at high .

e Possible explanation:

- Plasma pressure rises in footprint of heating source

forming small plasma in the vicinity of the coil.
The negative signal on the Langmuir probe in-
dicates some hot electrons reaching the probe.

After t=200 ms turbulence observed on Mirnov
loops and plasma spreading indicated by Lang-
muir probes.



A burst of neutral gas is released when the plasma
scrapes off and the hot electrons pitch angle
scatter on neutrals and are lost.

e Note: LDX operated in supported mode with strong
ECRH is not a MHD plasma

Loss cone, due to supports, means pitch-angle-
scatter is an important loss mechanism.

Kinetic terms due to hot electrons complicate
the stability boundary.

This general progression of events,
- a quiet period followed by

- a rapid expansion of the plasma due to
turbulence

- continued rise of diamagnetism with con-
tinued fluctuation activity

is observed in NIMROD simulations.

NIMROD not run long enough in time to ob-
serve high (3 instability, i.e. (3 collapse.
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NIMROD Code

e Solves non-linear resistive MHD equations
e Initial value calculation in real geometry
Provide realistic heating and particle source

Approximate x| = constant. Use higher order
(p=3) elements to permit x| > x ..

Kinematic viscosity approximation in momen-
tum equation. No diamagnetic terms.

e NIMROD equations
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U = flow velocity, () the heat source density, q the
heat flux:

q=-—"n [an)f) +x1(I— f)f)) - VT

Boundary Conditions: Dirichlet for B |, T', U;. Flux
for n, (F, = —DVn).



e ECRF heated plasma — hot electron component

- If pen, X peore stability of hot electron inter-
change mode requires §(perV"?Y) > 0, similarly to
MHD.

Poster BP1.141, Krasheninnikova and Catto.

e Non-Linear MHD in hard-core pinch geometry (high
aspect ratio approx):

- Convective cells will develop when interchange
limit is exceeded. Leads to particles transport
but not necessarily energy transport.

Ref: Reduced MHD: Pastukhov and Chudin,
Plasma Physics Report, 27, (2001) 963.

PIC simulation: Tonge, Leboeuf, Huang, Daw-
son, Phys P1 10 (2003) 3475.

¢ We want to simulate MHD instability in non-
linear regime in real 3-D dipole geometry

We consider configuration similar to LDX
with strong localized heating so as to drive
instability



In ideal case dipole can heat up to maximum pressure
determined by pV" = constant profile.

e DIPEQ code produces Grad-Shafranov equilibrium
for pV7 = constant. For (B,,4. = 36% equilibrium
for LDX paramters are:

Dipole (LDX) Parameters

Floating coil major radius 0.35 m
Coil Current 1.5x10% A
Vacuum vessel midplane radius 2.5 m
Peak field near coil 5T

Edge pressure 1.3 Pa
Peak pressure 150 Pa
Midplane radius of R(pmaz) 1.16 m

Peak 3 0.36



Psi and [B| Contours




Nimrod Input Plasma Parameters

Edge Temperature 0.4 eV

Perp thermal diffusivity (x.) 1 m?/s

Parallel thermal diffusivity () 10° m?/s
Perpdiffusion coefficient(D) 400 m?/s
Resistivity /o 10 m?/s
Kinematic viscosity 10 - 1000 m?/s
Alfven growth rate 0.1-1.5x10° s—1
Heating function **: Power 120 KW

RO(QMax) 1.15 111
FWHM 0.32 m

Other Nimrod Input Parameters

Poloidal grid 30 x 60
Number of toroidal modes 42
Finite element basis function degree 3

** High power used to speed up calculation

T High order finite element necessary to eliminate
X| cross-field heat leakage in high § system



Stages of Discharge Observed in Simulation

NIMROD allows us to view growth and interaction
of the unstable spectrum of modes.

0 <t < 125 ps (depending on heating rate). Stable
heat up

Pressure increases without observable losses

125 <t < 400 ps. Linear instability growth:
Higher-n modes grow fastest

Pressure increases without observable losses

t > 400 ps. Non-linear stage:

Modes saturation at macroscopic levels.

400 < t < 600 pus. n=1 mode dominant.

Convective cells present. Pressure profile broad-
ens to fill volume.

Not steady state but convection pattern persists

0.6 <t < 5 ms. Spectrum of modes dominated by
10 < n < 20. These are possibly resistive modes.

- Pressure continues to evolve toward pV'”7 = constant
profile.



- Edge pedestal develops due to viscosity and ve-
locity boundary condition (vegge = 0).

* Recent calculation out to t=5 ms (31,000
time steps) is approaching the critical pres-
sure profile.

The n=1 mode appears to be most efficient mode
for large scale transport and may appear when

p < 1/V7 throughout profile. (Calculated pro-
file has not yet reached this point).



Pressure contours in midplane in turbulent plasma at
t=0.51 (n=1 dominant) and t=0.64 ms (broadband)







Midplane pressure profile before and after instability

The n=1 mode causes the pressure profile to
broaden (¢ = 0 shown).
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Amplitude of modes between 0 <t < 0.6 ms

log(Ex) vs t for 0 < k < 42.






Spectra of modes dominated by n=1.
E;. at t=0.5 ms
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Heat up and turbulent expansion 0 <t < 0.6 ms




Parameters at R=0.85 m for 0 <t < 0.6 ms







0 <t <0.125 ms: p(2) rises linearly w/o instability

0.125 < t < 0.4 ms: p(¢) rises linearly w/o instabil-
ity

0.4 <t < 0.6 ms: n=1 mode dominates as pressure
profile spreads out to fill vacuum chamber.

0.6 < t < 5 ms: non-linear regime. Peak pressure
grows, pedestal appears, turbulence level provides
energy transport.

t>0.6ms?



Amplitude of modes between 0 <t <5 ms

log(Ex) vs t for 0 < k < 42.






Plasma stored energy (J) vs time




Internal Energy (tot, ¢l, 10n) vs. t
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Midplane pressure profile after heat up phase

e Most of profile at pV'7 = const limit

e Since viscosity eliminates flows near the edge a pedestal
forms at ¢ = 0 with sufficient slope for y, VI to
transfer the power across the boundary.
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Broad spectra of modes dominated by 10 < n < 20.
as pressure rises for ¢t > 0.5 ms.
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CONCLUSIONS

Strong heating with narrow heating profile can drive
pressure profile to the MHD stability limit.

MHD instability will develop and grow up in ~ 100 ps

- Higher modes (n > 20) will grow fastest in the
linear stage

- In non-linear stage n=1 will transport plasma
to fill available volume.

Broadened pressure profile is maintained by 10 <
n < 20 resistive modes.

- Pedestal observed at edge caused by viscous damp-
ing of convective flows.

Calculation not yet complete. MHD is expected
to impose a stiff pressure profile close to the marginal
profile, pV"7 = constant.



GENERAL COMMENTS

e Non-linear MHD offers a guess for the behavior of a
strongly heated dipole.

- Result is dependent on boundary conditions, par-
ticularly assumption ¥eqge=0.

- Heating profile together with y (7) determines
pressure profile and therefore stability boundary
(calculation assumes x; = 1).

X () will be determined by micro turbulence.





