
PHYSICS OF PLASMAS VOLUME 5, NUMBER 10 OCTOBER 1998
Stability of a plasma confined in a dipole field
J. Kesner
Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 3 March 1998; accepted 9 July 1998!

Plasma confined in a magnetic dipole field is stabilized by the expansion of the magnetic flux. The
stability of low beta electrostatic modes in a magnetic dipole field is examined when the distribution
function is Maxwellian to lowest order. It is shown using a Nyquist analysis that for sufficiently
gentle density and temperature gradients the configuration would be expected to be stable to both
magnetohydrodynamic and collisionless interchange modes. Furthermore, it is shown that when it is
stable to the interchange mode it is also stable to ion temperature gradient and collisionless trapped
particle modes, as well as modes driven by parallel dynamics such as the ‘‘universal’’ instability.
© 1998 American Institute of Physics.@S1070-664X~98!02610-X#
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I. INTRODUCTION

The use of a dipole magnetic field generated by a le
tated ring to confine a hot plasma for fusion power gene
tion was first suggested by Hasegawa.1 For a magnetic fusion
confinement configuration, end losses can be eliminated
levitating the current loop and the resulting configurati
possesses uniquely good properties. The coil set is sim
and axisymmetric and theory predicts both good confinem
properties and a high beta limit. Operation is inheren
steady state and the large flux expansion is expected to
plify the divertor design. Since the confining field of a lev
tated dipole is poloidal there are no particle drifts off the fl
surfaces~which in a tokamak leads to a ‘‘neoclassical’’ de
radation of confinement! and therefore in the absence of tu
bulent transport confinement could be ‘‘classical.’’ Conce
tual reactor studies have supported the possibility of a dip
based fusion reactor.2–4

It has been conjectured that a plasma confined in a
pole field may be free of the low frequency instabilities1–5

that are thought to give rise to ‘‘anomalous’’ transport
most laboratory plasmas. Hasegawa has pointed out1,2 that
when the plasma is sufficiently collisionless, the equilibriu
distribution function may be described byF05F0(m,J,c),
with m the first invariant,m5v'

2 /2B, J the second invariant
J5rds v i , andc the flux invariant. For fluctuations in th
range of the curvature drift frequency, flux is not conserv
and a collisionless plasma can approach the s
]F(m,J,c)/]c→0. Furthermore, when]F(m,J,c)/]c50
the plasma can be shown to be stable to drift frequency fl
tuations. In a dipole field this condition leads to the pred
tion that the plasma will be marginally stable when t
pressure profiles scale asp}R220/3, similar to energetic
particle pressure profiles observed in the planet
magnetospheres.6,7 For fusion relevant plasmas confineme
must be maintained on a collisional timescale. Therefore
would expect the distribution function to be, to lowest ord
Maxwellian, i.e.,F0(m,J)→F0(e,c) and therefore]F/]c
Þ0. In this paper we will focus on the stability of drift fre
quency modes that are driven by]F/]c and are thought to
degrade confinement in fusion grade plasmas.
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Most toroidal confinement devices with a rotation
transform~such as a tokamak! obtain stability from a com-
bination of ‘‘average good curvature’’ and magnetic she
For a plasma surrounding a floating ring, the pressure p
will occur at a distance from the ring surface and beyond
pressure peak the pressure must decrease in a regio
‘‘bad’’ curvature. Magnetohydrodynamic~MHD! theory pre-
dicts that when a plasma is confined in a ‘‘bad’’ curvatu
region it can be stable provided the pressure gradient d
not exceed a critical value. The stabilization derives from
plasma compressibility, i.e., the assumption made in MH
theory thatpVg is constant. In this paper we will explore th
effect of compressibility on drift frequency range modes.

Ideal MHD theory provides a simple approximation f
plasma behavior and it does not take account of impor
‘‘nonideal’’ effects such as finite Larmor radius~FLR! ef-
fects, the relationship of density and temperature profi
~characterized byh! or wave particle resonances. One su
pects that these nonideal effects may be important i
plasma that is stabilized by compressibility. Goede, H
manic, and Dawson8 have looked into this question throug
the application of a particle-in-cell~PIC! code in a slab ge-
ometry. They find that stabilization due to compressibility
observed but that nonideal corrections such as finite Lar
radius~FLR! can be important.

The ideal MHD growth rate for unstable interchan
modes can be obtained from kinetic theory but the marg
stability condition cannot be simply derived. In a previo
study we obtained the dispersion relation from the drift
netic equation and solve for the stability of several distin
modes.5 Here we obtain marginal stability by means of
Nyquist analysis which permits us to accurately obtain
marginal stability conditions with a minimum of simplifica
tions. In particular it permits us to include FLR an
temperature/density profile effects, wave-particle resonan
collisionality, and parallel dynamics.

In this work we will show that kinetic theory indicate
unusual stability properties for a plasma that is stabilized
compressibility. Specifically we will show that while kineti
theory reproduces the MHD result for the stability of inte
change modes, it also indicates that both ‘‘trapped partic
5 © 1998 American Institute of Physics
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modes andh i modes will be stable when the interchan
modes are stable. Additionally the universal instability is c
culated to be stable in a dipole due to the constraints of fi
line length imposed by the dipole geometry. On the ot
hand, anh-driven interchange mode can become unsta
(h[d ln T/d ln n) in a collisionless plasma whenhÞ1.

Drift wave theory, as applied to tokamaks, usually a
sumes an orderingv* @vd @v* is the diamagnetic drift and
vd the curvature drift as defined below in Eq.~3!#. The
unique property of a dipole to be shown below is that MH
stability requiresv* &2vd and this ‘‘large plasma order
ing’’ will be seen to give rise to uniquely favorable stabili
properties for low frequency drift modes.

In Sec. II we will derive the dispersion relation for low
frequency electrostatic modes keeping drift resonant ter
In Sec. III we present stability results derived from a Nyqu
solution to the dispersion relation. We first derive the sta
ity condition for collisionless interchange modes which giv
a stability criterion that requires that the pressure grad
not exceed a critical value, similarly to the MHD conditio
We consider the stabilizing effects of ion finite Larmor r
dius corrections as well as destabilizing profile effects. W
then explore the stability of collisionless trapped partic
collisional electron, and of the universal instability in th
large plasma ordering regime.

II. BASIC EQUATIONS

To derive the stability criterion for electrostatic mod
we consider a fluctuating potential~f! and ignore any equi-
librium electrostatic potential. From Faraday’s law it is po
sible for a perturbation to leave the magnetic field und
turbed if E52¹f, which is consistent withb!1. If f
varies along a field line, there will be a finiteEi ~a situation
not possible in ideal MHD theory!.

We analyze the stability of such a perturbation under
assumptions that the wave frequencyv is less than the cy-
clotron frequencyVc and that the ion Larmor radiusr i is
shorter than the perpendicular wavelengthl52p/k' which
is, in turn, short compared to a parallel wavelength, 2p/ki .
The appropriate equation for the distribution functionf̃ is
then9,10

f̃ 5qfF0e1J0~k'r!h, ~1!

and the nonadiabatic responseh satisfies

~v2vd1 iv ib–“8!h52~v2v* !qfF0eJ0~k'r!1 iC~h!.
~2!

In Eq. ~2! J0(k'r) is the Bessel function of the first kind
F0(e,c) is the equilibrium distribution function, and

F0e[
]F0

]e
, ~3a!

v* 5
b3k'•¹8F0

mVcF0e
, ~3b!

vd5mk'–b3
~v i

2b–“b1m¹B!

Vc
, ~3c!
-
ld
r

le

-

s.
t
l-
s
nt

e
,

-
-

e

B5¹c3¹u, ~3d!

b5B/uBu. ~3e!

The gradient¹8 is taken at constante5v2/2, m5v'
2 /2B and

u is the azimuthal angle. We also definev̂* p

5k'¹p/(neVc) and v̂d5k'T/(RcVc) with Rc
215b–“b.

We consider first a perturbation whose growth time
long compared to a particle bounce time, i.e., modes
conserve both the first (m5v'

2 /2B) and second (J5rv idl)
adiabatic invarients. This yields the result thath is a constant
along a field line,h5h0(e,m,c). We will determine the
constant by taking the bounce average of Eq.~3!,

h05
2~v2v* !qf̄F0eJ0

~v2v̄d1 inq!
, ~4!

and the overbar indicates a time average:

f̄5
1

tB
R dl

uv iu
f, ~5a!

tB5 R dl

uv iu
. ~5b!

For simplicity the collision operator has been replaced b
Krook model in Eq.~4!, i.e., C(h)→2n jh with n j the ap-
propriate collision frequency. To proceed further we will a
sumeu¹Bu/B'1/Rc which is consistent with a low beta ap
proximation.

An approximate form for the bounce average of the c
vature driftvd in a dipole magnetic field11 is:

v̄d'
k'v2

V0Rc0
~0.3510.15 sina0!

5
k'

V0Rc0
~0.5v'0

2 10.35v i0
2 !, ~6a!

with a0 the pitch angle at the dipole outer midplane and
subscript ‘‘0’’ indicates that quantities are evaluated at
outer midplane~i.e., on the magnetic field minimum!. The
perpendicular velocity term dominates because the radiu
curvature is relatively constant in a dipole andv'

2 /Vc is con-
served during particle motion, whereasv i

2/Vc decreases
away from the field minimum. We therefore will simplifyv̄d

as follows:

v̄d→0.5
k'v'0

2

V0Rc0
. ~6b!

To obtain the dispersion relationship for electrostatic mo
we integrate the perturbed responses over velocity space
apply quasi-neutrality:

05(
j

qjE d3v f̃ j

5(
j

q2f/Tj2q2A2/p (
j

~f̄/Tj !
nj

Tj
3/2

3E v2dvJ0
2~k'r j !e

2v2/2TF v2v* j

v2v̄d j1 in j
G , ~7!
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with v* j5v̂* n(123/2h j1h jv
2/2T), h[d(ln T)/d(ln n),

and v̂* n5k'T¹n/(nV) which is a flux function. The term
v̄d j}v'

2 and gives rise to a resonant denominator in Eq.~7!.
We can re-derive the MHD growth rate by settingn j

50 and expanding the denominator~the compressibility de-
rives from the second order term!, assumingv@v̄d . This
expansion, however, cannot be made near marginal stab
and we will therefore keep the resonance denominator
express the dispersion relation in terms of integrals of
form:

Y~j!5E
0

` e2xdx

x2j
5e2jE1~j!, ~8!

with E1 the exponential integral.12 Expanding the Besse
functions for small gyro radius (J0

2'12k'
2 v'

2 /2Vci0
2 ) we ob-

tain the dispersion relation:

f T

f̄

T (
j

v* n j

v̂d j
@~v/v* n j1h j21!Y~j j !

2@h j1~k'r j !
2~v/v* n j1h j21!#~j jY~j j !21!

1h j~k'r j !
2~j j

2Y~j j !2j j21!#1
2f

T
50, ~9!

with j j52v/v̂d j, r i
25Ti /miVci0

2 , v̂d j5k'v j
2/Rc0V0 j ,

and the thermal speed,v j
25Tj /mj . Notice that there is a

coupling between FLR andh terms. We will ignore electron
FLR terms and assume a two species hydrogenic plas
The factorf T will be discussed below in relation to trappe
particle modes andf T51 for interchange modes.

A second approach that was utilized for the solution
the dispersion relation was to approximatev̄d as v̄d

5v2k'/2V0Rc0 and additionally to approximateJ0
2'1

2k'
2 v2/2Vci0

2 with v25v'
2 1v i

2. This leads to a more com
plicated dispersion relation than Eq.~9! and it was difficult to
assess the influence of the approximation that was made
J0

2. However, it was found that the results from this appro
mation were not significantly different than those presen
below.

In a previous work5 we examined the stability of severa
individual modes and appropriate assumptions were mad
decouple one mode from another. In this paper we will
amine plasma stability using the Nyquist criteria13 which will
allow us to examine stability more generally, including t
interaction of different modes. As is well known a Nyqui
approach will indicate the stability boundary but it will no
yield a frequency or growth rate.

III. RESULTS OF NYQUIST STUDY

A. Collisionless interchange stability

The stability requirement from MHD isd(pVg)>0 with
V5rdl/B and we can therefore define a critical press
dependence:pcrit}1/Vg. The critical pressure gradient at th
outer midplane is therefore@¹p/p#crit5g@¹V/V#0 and we
observe that@¹V/V#0'1/Rc . In a dipole fieldV5rdl/B
}R0

4 with R0 the radius on the outer midplane we obta
pcrit}R0

220/3 and the pressure scale lengthr p
crit[p/¹p

50.15R0 . Since, for a dipole the radius of curvature on t
ity
d
e

a.

f

for
-
d

to
-

e

outer midplane isRc05R0/3 we obtain a critical pressur
gradient from MHD, namelyRc0¹p/p5v̂* p /v̂d520/9
'2.2.

We consider first the stability of collisionless inte
change modes, i.e., modes withf̄5f. We will pay particu-
lar attention to the effect on stability of FLR and of profi
dependence. Consider first the case withh51. In Fig. 1 we
display the normalized outer midplane critical pressure g
dient v̂* p /v̂* d5Rc0¹p/p versus the ion gyro radiusk'r i .
~The collisionless interchange mode is a kinetic version
the MHD interchange mode.! The effect of FLR is observed
to be stabilizing, i.e., a largerk'r i value permits a steepe
pressure gradient. Sincek''m/R0 the most unstable mod
hask'r;r/R0!1. The kinetic theory prediction is compa
rable with the MHD prediction but not identical since
leaves out thev i part of the curvature drive but takes prop
account of the wave particle resonance interaction.

The destabilization that results from increasingh.1 is
an important and new result. Figure 1 compares the stab
boundary for both theh52 and theh51 modes. Whenh
.1 the Nyquist analysis indicates two unstable roots wh
the pressure gradient exceeds a critical value. The two mo
predicted are the fast growing MHD-like mode and a dr
frequency mode.5 Figure 1 demonstrates that forh52 the
critical pressure gradient can be limited to values subs
tially below the limit set by theh51 interchange mode. A
value forh55 is also shown in Fig. 1. The degradation
the stability that is observed ash increases derives from th
profile effects that underlie the charge separation. Notice a
that the h-driven degradation of stability comes from th
FLR coupling terms and disappears whenk'r i50.

Stability is also degraded whenh,1 see~Table I!, i.e.,

FIG. 1. Critical pressure gradient vsk'r i for h52/3 and 2. Theh55
prediction is also shown.

TABLE I. v̂* p /v̂d (5Rc0¹p/p) for collisionless interchange and localize
modes.

h k'r i f T v̂* p /v̂d

0.5 0.2 1 0.39
1 0.2 1 2.03
2 0.2 1 1.68
1 0.2 0.8 2.54
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for too strongly peaked density profiles. Thus there is
optimum density and temperature profile for which t
charge separation that accompanies an interchange of
tubes is minimized and a deviation from this profile is des
bilizing. This comes about because, whereas for a margin
stable MHD pressure profile an interchange of flux tub
does not change the pressure profile or the internal pla
energy, for a criticalh value the same exchange of flux tub
leaves the density and temperature profiles unchanged.

For comparison we recall that whenv* @vd an inter-
change mode is unstable for allv* when vd.0, i.e., in
‘‘bad curvature.’’ The toroidalh i mode discussed in theh i

section below is closely related to theh-driven interchange
mode just discussed.

B. Trapped particle mode

From Eq.~6b! we observe that the curvature drift is lar
est for the most deeply trapped particles, i.e., partic
trapped at the outer midplane where the magnetic field
its minimum value. Therefore one may expect a tendency
curvature driven modes to localize in the vicinity of the ou
midplane, which would give rise to ‘‘trapped particle
modes. To evaluate the tendency of modes to localize a
outer midplane we will assume that the wave is localiz
near the outer midplane so that a fractionf T of deeply
trapped particles feel the full wave potential, i.e.,f̄5f0 ,
while the shallowly trapped and circulating particles on
feel a small bounce averaged potential, i.e.,f̄/f0!1. Ny-
quist studies reveal that trapped particle modes, i.e., mo
with f T,1 are always more stable than interchange mod
For example, forh51, k'r50.2, f T50.8, we find that there
is instability whenv* p.2.54v̂d whereas for the same cas
but with f T51 we find instability whenv* p.2.03v̂d

~Table I!. This result is peculiar to stabilization by compres
ibility and indicates that since the deeply trapped partic
provide the compressibility, a mode that is felt by mo
deeply trapped particles is more stable.

C. Collisional electron modes, the dipole h i mode

Electrons are more collisional than ions at the same t
perature and the difference in the electron and ion respo
deriving from the difference in collisionality can drive inst
bility. When the electrons are sufficiently collisional the
have an adiabatic response to fluctuating electric fie
Modes that result from collisional~adiabatic! electrons and
collisionless ions can be viewed as a limiting case of
dissipative trapped ion mode. This mode is destabilized ah i

increases and is analogous to the tokamak toroidalh i

mode.14

To obtain a estimate of this instability we assume t
the electron response is adiabatic, i.e.,f̃ 5qfF0e . Then the
sum over species in Eq.~9! is reduced to the ion term. In Fig
2 we plot the marginal stability boundaryv̂* p /v̂d vs k'r i

with h i52 for both the collisional electron mode and for th
collisionless interchange mode. We observe that the c
sional electron mode does not become unstable unless
pressure gradient is about a factor of 2 larger than the crit
n
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gradient for the interchange mode~which is the FLR cor-
rected fast MHD mode!. For general values ofh i we find
that the collisional electron mode is stable ath i51 and be-
comes unstable for sufficiently largev̂* p /v̂d when h i.1
but is always stable when the collisionless interchange m
is stable. Unlike theh-driven collisionless interchange mod
discussed above this mode is only unstable forh i.1.

The h i modes are widely discussed in tokamak liter
ture. The slab-h i mode15 has a finiteki and is driven by
coupling to sound waves whereas we are dealing here w
ki;0 mode. On the other hand the toroidalh i mode14 has a
ballooning character and is driven by the bad curvature c
vature that is located on the outside of a tokamak. We h
shown that in a dipole this mode appears with an intercha
character.

D. Modes that depend on parallel dynamics

Drift modes can depend on parallel dynamics as is
case with the so-called ‘‘universal instability’’ and the sla
‘‘ h i mode.’’ These modes have finiteki and do not conserve
the second invariant,J, and it is therefore not appropriate t
bounce average the drift kinetic equation for the ion
sponse.

To analyze the stability of modes with finiteki we apply
Eq. ~2! for the ion response and keep thev i velocity depen-
dence in the ion curvature drift frequency. Using Eq.~3c!
and averaging the perpendicular ion drift we obtain the e
mate

vdi'
k'

V0Rc
~v i

21Ti !. ~10!

For electrons we assume an adiabatic response sincekive

@v. Substituting Eq.~10! into ~2! and replacingv ib–“ by
kiv i in the ion term we obtain the follow dispersion relatio

05
2f

T
2

f T~f/T!v* n j

~v t
2ki

228vvdi!
1/2 @~v/v* ni112h i /2!

3~12~k'r i !
2!~W~z1!2W~z2!!1h i~12~k'r i !

2!

3~z12z21z1
2 W~z1!2z2

2 W~z2!!#, ~11!

FIG. 2. The marginal stability boundaryv̂* p /v̂d vs k'r i with h i52 for
both the collisional electron (h i) mode and for the MHD-like collisionless
interchange mode~dashed!.
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with

z65
kiRcVci

2k'v t
6F S kiRcVci

2k'v t
D 2

2
v

2vdi
G1/2

. ~12!

The thermal speedv t
252Ti /mi , vdi5k'Ti /(miR0Vci0)

and

W~z!5
1

Ap
E

2`

` e2x2
dx

x2z
.

For Im(z).0, W is equal to the plasma dispersion function16

Z(z), and for Im(z),0, W(z)52Z(2z).
The Nyquist analysis of Eq.~11! varying h, k'r, and

v̂* /v̂D always indicates stability. This is not surprising b
cause it is known that Landau damping will be strongly s
bilizing unlessv i!v/ki!ve . In a levitated dipole the field
lines are closed and we can impose the conditionki;m/Rc

with Rc the radius of curvature andm>1. Since v;vd

5v i(k'r i)/Rc the first inequalityv i!v/ki can be written as
k'r i@1. This indicates that the mode will be strongly La
dau damped whenk'r i,1. The observed stability of thes
modes is a result of the field line length being insufficient
a dipole field to support the relatively long parallel wav
length of these modes.

IV. CONCLUSIONS

In a previous study5 we have shown that a number o
electrostatic drift frequency modes become stable when
pressure gradient in the plasma satisfies the MHD in
change stability criterion. In this work we have followed
more general approach to this problem that utilizes the
quist criterion to track stability boundaries obtained from
general dispersion relation with a minimum of simplifyin
assumptions. MHD stability requires that the pressure gr
ent not exceed a critical valueRc0¹p/p,g and we find that
while the kinetic theory predicts a similar result for inte
change modes the profile and FLR effects can significa
alter stability.

We have shown that a confinement scheme that is m
ginally stable due to the balance of compressibility and c
vature drive possesses unusually good stability proper
We find that whenh51 andv* p,2vd all of the studied
interchange modes,h-driven modes, localized~trapped par-
ticle! modes,h i ~i.e., collisional electron modes! and modes
that depend on parallel dynamics were observed to be sta
In the regime that is relevant to present day experiments
dipole h i mode is destabilized whenh i.1 but it is seen to
be stable when the MHD stability criterion is satisfied. In t
collisionless reactor regime, whenhÞ1 (h i5he5h) the
h-driven interchange mode can be unstable and therefore
must either maintainh;1 or accept the consequences of t
-

-

e
r-

-

i-

ly

r-
r-
s.

le.
e
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instability. The nonlinear consequence of this instability m
be the development of convective cells which could serve
maintain a critical density profile.

For the collisionless curvature driven modes we ha
seen that extended, i.e., interchange modes, are more
stable than modes that are localized in the low field regi
This result is opposite to the standard trapped particle re
and may be understood as an indication that the dee
trapped particles are localized to the region with the larg
field gradient and therefore have the largest compressib
driven stabilization.

It is believed that theh i mode plays an important role in
thermal transport for a tokamak. Theh i mode is driven by
the temperature gradient and there is an associated pre
gradient. For a tokamak this mode can be unstable while
plasma maintains MHD stability due to the good curvature
the outer torus. For a dipole the pressure gradient assoc
with the temperature gradient will destabilize interchan
modes before it will destabilizeh i modes. Stabilization from
compressibility requires thatRc0¹p/p,g (g55/3). For a
tokamak^Rc&¹p/p'A, with A the aspect ratio and since
tokamak will typically haveA*2 compressibility will not
normally be important. A low aspect ratio tokamak, on t
other hand, can gain substantial stabilization from compre
ibility.
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