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Stability of a plasma confined in a dipole field
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Plasma confined in a magnetic dipole field is stabilized by the expansion of the magnetic flux. The
stability of low beta electrostatic modes in a magnetic dipole field is examined when the distribution
function is Maxwellian to lowest order. It is shown using a Nyquist analysis that for sufficiently
gentle density and temperature gradients the configuration would be expected to be stable to both
magnetohydrodynamic and collisionless interchange modes. Furthermore, it is shown that when it is
stable to the interchange mode it is also stable to ion temperature gradient and collisionless trapped
particle modes, as well as modes driven by parallel dynamics such as the “universal” instability.
© 1998 American Institute of PhysidsS1070-664X98)02610-X

I. INTRODUCTION Most toroidal confinement devices with a rotational
transform(such as a tokamalobtain stability from a com-
The use of a dipole magnetic field generated by a levibination of “average good curvature” and magnetic shear.
tated ring to confine a hot plasma for fusion power generafFor a plasma surrounding a floating ring, the pressure peak
tion was first suggested by Hasegateor a magnetic fusion  will occur at a distance from the ring surface and beyond the
confinement configuration, end losses can be eliminated byressure peak the pressure must decrease in a region of
levitating the current loop and the resulting configuration“bad” curvature. MagnetohydrodynamidqHD) theory pre-
possesses uniquely good properties. The coil set is simpldicts that when a plasma is confined in a “bad” curvature
and axisymmetric and theory predicts both good confinementegion it can be stable provided the pressure gradient does
properties and a high beta limit. Operation is inherentlynot exceed a critical value. The stabilization derives from the
steady state and the large flux expansion is expected to simplasma compressibility, i.e., the assumption made in MHD
plify the divertor design. Since the confining field of a levi- theory thatpV? is constant. In this paper we will explore the
tated dipole is poloidal there are no particle drifts off the fluxeffect of compressibility on drift frequency range modes.
surfacegwhich in a tokamak leads to a “neoclassical” deg- Ideal MHD theory provides a simple approximation for
radation of confinemeptind therefore in the absence of tur- plasma behavior and it does not take account of important
bulent transport confinement could be “classical.” Concep-“nonideal” effects such as finite Larmor radiU§LR) ef-
tual reactor studies have supported the possibility of a dipoléects, the relationship of density and temperature profiles
based fusion reactdr* (characterized byy) or wave particle resonances. One sus-
It has been conjectured that a plasma confined in a dipects that these nonideal effects may be important in a
pole field may be free of the low frequency instabilities plasma that is stabilized by compressibility. Goede, Hu-
that are thought to give rise to “anomalous” transport in manic, and Dawsdhhave looked into this question through
most laboratory plasmas. Hasegawa has pointeti’abat  the application of a particle-in-ce{PIC) code in a slab ge-
when the plasma is sufficiently collisionless, the equilibriumometry. They find that stabilization due to compressibility is
distribution function may be described IR”y=Fq(u,J, ), observed but that nonideal corrections such as finite Larmor
with u the first invariant,u=vf/28, J the second invariant, radius(FLR) can be important.
J=¢ds v, and ¢ the flux invariant. For fluctuations in the The ideal MHD growth rate for unstable interchange
range of the curvature drift frequency, flux is not conservednodes can be obtained from kinetic theory but the marginal
and a collisionless plasma can approach the statetability condition cannot be simply derived. In a previous
IF(u,d, ) dy—0. Furthermore, whedF (u,J,¥)/dy=0 study we obtained the dispersion relation from the drift ki-
the plasma can be shown to be stable to drift frequency flucretic equation and solve for the stability of several distinct
tuations. In a dipole field this condition leads to the predic-modes’ Here we obtain marginal stability by means of a
tion that the plasma will be marginally stable when theNyquist analysis which permits us to accurately obtain the
pressure profiles scale gs<R 2% similar to energetic marginal stability conditions with a minimum of simplifica-
particle pressure profiles observed in the planetarntions. In particular it permits us to include FLR and
magnetospherés. For fusion relevant plasmas confinement temperature/density profile effects, wave-particle resonances,
must be maintained on a collisional timescale. Therefore weollisionality, and parallel dynamics.
would expect the distribution function to be, to lowest order, In this work we will show that kinetic theory indicates
Maxwellian, i.e.,Fo(x,J)—Fo(e,¢) and thereforeoF/d¢  unusual stability properties for a plasma that is stabilized by
#0. In this paper we will focus on the stability of drift fre- compressibility. Specifically we will show that while kinetic
guency modes that are driven B¥/9¢ and are thought to theory reproduces the MHD result for the stability of inter-
degrade confinement in fusion grade plasmas. change modes, it also indicates that both “trapped particle”
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modes andn; modes will be stable when the interchange  B=Vyx Vg, (3d
modes are stable. Additionally the universal instability is cal-
culated to be stable in a dipole due to the constraints of field b=B/[B|. (€]

line length imposed by the dipole geometry. On the othefr,q gradien¥’ is taken at constart=0v2/2, ,u=vf/28 and
hand, anz-driven interchange mode can become unstabley s the azimuthal angle. We also definé
. .. . *

(n=d .In T/dInn)in a coIhsmnIgss plasma when# 1. =k, Vp/(neQ) andag=k, T/(RQ,) with R;*=b-Vb. P

Drift wave t_heory, as appl.led to t.okamaks., usm_JaIIy aS- We consider first a perturbation whose growth time is
sumes an ordering, ,>>"’d [o, 1S the dlamagneuc drift and long compared to a particle bounce time, i.e., modes that
wg the curvature drlft. as defined below in E(ﬁ)]. The  onserve both the first=v2/2B) and second I=fv,dl)
unique property of a dipole to be shown below is that MHD ,iapatic invarients. This yields the result thés a constant
stability requiresw, <2wqy and this “large plasma order- along a field line,h=ho(e, u, ). We will determine the

ing” will be seen to give rise to uniquely favorable stability -, ciant by taking the bounce average of &)
properties for low frequency drift modes. "

In Sec. Il we will derive the dispersion relation for low —(w—w*)ngOEJO
frequency electrostatic modes keeping drift resonant terms. o™ (0—wgtivg (4)
In Sec. lll we present stability results derived from a Nyquist o )
solution to the dispersion relation. We first derive the stabil-2nd the overbar indicates a time average:
ity condition for collisionless interchange modes which gives ¢ dl

a stability criterion that requires that the pressure gradient ¢= - m ,
B Il

(5a)

not exceed a critical value, similarly to the MHD condition.
We consider the stabilizing effects of ion finite Larmor ra- dl
dius corrections as well as destabilizing profile effects. We  78= W (5b)

then explore the stability of collisionless trapped patrticle,
collisional electron, and of the universal instability in the For simplicity the collision operator has been replaced by a
large plasma ordering regime. Krook model in Eq.(4), i.e., C(h)— —»;h with v; the ap-
propriate collision frequency. To proceed further we will as-
sume|VB|/B~1/R. which is consistent with a low beta ap-
1. BASIC EQUATIONS proximation.

) - o ) An approximate form for the bounce average of the cur-

To d_erlve the stab_ﬂﬂy criterion for el_ectrostatlc moqles vature driftwy in a dipole magnetic fiefd is:
we consider a fluctuating potentigb) and ignore any equi- )
librium electrostatic potential. From Faraday’s law it is pos- = kv
sible for a perturbation to leave the magnetic field undis- 4 OoR0
turbed if E=—V ¢, which is consistent with3<1. If ¢ K
\r/g;les along a field line, there will be a finit (a situation = ﬁ (0.50%,+0.3), (6a)

possible in ideal MHD theojy oRco

We analyze the stability of such a perturbation under the, i, @
assumptions that the wave frequensyis less than the cy-

clotron frequency ), and that the ion Larmor radiug; is

(0.35+0.15 sinay)

the pitch angle at the dipole outer midplane and the
subscript “0” indicates that quantities are evaluated at the
) ) outer midplane(i.e., on the magnetic field minimumThe
shorter than the perpendicular wavelength 2m/k, which — horpendicular velocity term dominates because the radius of
IS, in turn, short compared to a parallel wavelength/,. ¢, ature is relatively constant in a dipole arfd Q. is con-

The appropriate equation for the distribution functibris  ggpyed during particle motion, Whereazﬁlﬂc decreases

therf away from the field minimum. We therefore will simplifyq
F=qeFo+Jo(k.p)h, (1) as follows:
i i isfi k, v?
and the nonadiabatic resporisasatisfies Ed—>0.5(; RLO | o
0"}cO

(0= wgtivb-V')h=—(0—-0,)q¢Fedo(k p)+iC(h).

(2 To obtain the dispersion relationship for electrostatic modes
In Eq. (2) Jo(k, p) is the Bessel function of the first kind, We integrate the perturbed responses over velocity space and
Fo(e, ) is the equilibrium distribution function, and apply quasi-neutrality:

IF r
0= ——, (3a 0=2 qif d®vf;

e i

bxk, -V'F STy
w, =t LT (3b) = PHIT—q?\2m X ($IT) =3

mQCFOE J J TJ

(vFb-Vb+uVB) A T

wd_ka X QC s (3C) XJU dUJo(kJ_pJ)e (D_adj+|VJ ) (7)
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with - @, j= @, n(1—3/29;+ niv2/2T), »=d(In T)/d(In n),
and &, ,=k, TVn/(n€}) which is a flux function. The term 24 f
deocvf and gives rise to a resonant denominator in &g. ki
We can re-derive the MHD growth rate by settimg
=0 and expanding the denominattine compressibility de-
rives from the second order teymassumingw> wy. This s
expansion, however, cannot be made near marginal stability
and we will therefore keep the resonance denominator and

= ReoVp/p

Wap /W

express the dispersion relation in terms of integrals of the 14 s
form: 2 4
» e *dx ¢ ) . . . : :
Y ( é—’) = — =e El( g) , (8) 0 01 02 03 04 05 0.6
o X § kip

with E; the exponential integrdf Expanding the Bessel FiG. 1. critical pressure gradient \s p; for 7=2/3 and 2. Thep=5
functions for small gyro radiusJg~1—k?v?/202,,) we ob-  prediction is also shown.
tain the dispersion relation:

¢ Wy nj outer midplane isR;;=Ry/3 we obtain a critical pressure
fry 2,: @] [(wl @ynjt i = DY (&) gradient from MHD, namelyR.oVp/p= &, ,/dq=20/9
~2.2.
—Lm+(kepp®(@lw,n+ = DIEY (§) - 1) We consider first the stability of collisionless inter-
2¢ change modes, i.e., modes wigh= ¢». We will pay particu-
+ (ki p)A(EY (&)~ & 1]+ < -0 (9)  lar attention to the effect on stability of FLR and of profile
dependence. Consider first the case wjth 1. In Fig. 1 we
with &=—w/dqg, pi=Ti/mQ%, &4=k v/RoQoj, display the normalized outer midplane critical pressure gra-

and the thermal speed,]?:Tj/mj. Notice that there is a dient @y pl @4 q=ReoVp/p versus the ion gyro radius, p; .
coupling between FLR ang terms. We will ignore electron (The collisionless interchange mode is a kinetic version of
FLR terms and assume a two species hydrogenic plasmghe MHD interchange modeThe effect of FLR is observed
The factorf will be discussed below in relation to trapped to be stabilizing, i.e., a larget, p; value permits a steeper
particle modes andi;=1 for interchange modes. pressure gradient. Sinde ~m/R, the most unstable mode

A second approach that was utilized for the solution ofhask, p~ p/R,<1. The kinetic theory prediction is compa-
the dispersion relation was to approximate; as wgq rable with the MHD prediction but not identical since it
=v2%k, /2Q4R,, and additionally to approximateli~1  leaves out the, part of the curvature drive but takes proper
—kfv?/20%, with v2=v?+0v?. This leads to a more com- account of the wave particle resonance interaction.
plicated dispersion relation than E§) and it was difficult to The destabilization that results from increasinpg 1 is
assess the influence of the approximation that was made fein important and new result. Figure 1 compares the stability
JS. However, it was found that the results from this approxi-boundary for both the;=2 and they=1 modes. Whery
mation were not significantly different than those presented>1 the Nyquist analysis indicates two unstable roots when
below. the pressure gradient exceeds a critical value. The two modes

In a previous workwe examined the stability of several predicted are the fast growing MHD-like mode and a drift
individual modes and appropriate assumptions were made feequency mod&.Figure 1 demonstrates that faoy=2 the
decouple one mode from another. In this paper we will excritical pressure gradient can be limited to values substan-
amine plasma stability using the Nyquist critéfiavhich will tially below the limit set by thep=1 interchange mode. A
allow us to examine stability more generally, including thevalue for =5 is also shown in Fig. 1. The degradation of
interaction of different modes. As is well known a Nyquist the stability that is observed agincreases derives from the
approach will indicate the stability boundary but it will not profile effects that underlie the charge separation. Notice also

yield a frequency or growth rate. that the »-driven degradation of stability comes from the
FLR coupling terms and disappears whHem;=0.
IIl. RESULTS OF NYQUIST STUDY Stability is also degraded whep<1 see(Table ), i.e.,

A. Collisionless interchange stability

The stability requirement from MHD i§(pV7) =0 with TABLE l. @, /&4 (=RVp/p) for collisionless interchange and localized
V=4dI/B and we can therefore define a critical pressurg™des.
dependencepi;< 1/V?. The critical pressure gradient at the

. . 7 K, pi fr &’*p/a’d
outer midplane is thereforeVp/pl.i=v[VV/IV]p and we
observe tha{ VV/V]o~1/R.. In a dipole fieldV=g¢dI/B 0.5 0.2 1 0.39
«R§ with R, the radius on the outer midplane we obtain ; 8'2 1 i'gg
Peit*Ry 2 and the pressure scale lengttf™=p/Vp 1 0.2 0.8 554

=0.15R,. Since, for a dipole the radius of curvature on the
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for too strongly peaked density profiles. Thus there is an 5
optimum density and temperature profile for which the
charge separation that accompanies an interchange of flux
tubes is minimized and a deviation from this profile is desta-
bilizing. This comes about because, whereas for a marginally =
stable MHD pressure profile an interchange of flux tubes &
does not change the pressure profile or the internal plasma
energy, for a criticaly value the same exchange of flux tubes ' M
leaves the density and temperature profiles unchanged. 294

For comparison we recall that whes, > w4 an inter- 151
change mode is unstable for all, when wy4>0, i.e., in
“bad curvature.” The toroidalky; mode discussed in ths; o o1 02 03 04 os 06
section below is closely related to thgdriven interchange
mode just discussed.

ke

FIG. 2. The marginal stability bounda@y, ,/aq vs k, p; with 7;=2 for
both the collisional electronsf;) mode and for the MHD-like collisionless
B. Trapped particle mode interchange modédashedl

From Eq.(6b) we observe that the curvature drift is larg-

est for the most deeply trapped particles, i.e., particlegradient for the interchange modehich is the FLR cor-
trapped at the outer midplane where the magnetic field hagcted fast MHD mode For general values of;, we find

its minimum value. Therefore one may expect a tendency fofhat the collisional electron mode is stableat=1 and be-
curvature driven modes to localize in the vicinity of the outercomes unstable for sufficiently large, ,/&q when 7;>1
midplane, which would give rise to “trapped particle” pyt is always stable when the collisionless interchange mode
modes. To evaluate the tendency of modes to localize at thg stable. Unlike thep-driven collisionless interchange mode
outer midplane we will assume that the wave is localizedyiscussed above this mode is only unstablezfpr 1.

near the outer midplane so that a fractibp of deeply The 5, modes are widely discussed in tokamak litera-
trapped particles feel the full wave potential, i.é.=¢o,  ture. The slabs, modé® has a finitek, and is driven by
while the shallowly trapped and circulating particles only coupling to sound waves whereas we are dealing here with a
feel a small bounce averaged potential, i¢/¢o<1. Ny-  k,~0 mode. On the other hand the toroidalmodée has a
quist studies reveal that trapped particle modes, i.e., moddsallooning character and is driven by the bad curvature cur-
with ft<<1 are always more stable than interchange modes:ature that is located on the outside of a tokamak. We have
For example, fom=1,k, p=0.2,f;=0.8, we find that there shown that in a dipole this mode appears with an interchange
is instability whenw,, ,>2.544 whereas for the same case character.

but with fr=1 we find instability whenw, ,>2.03@4

(Table ). This result is peculiar to stabilization by compress-p_ Modes that depend on parallel dynamics

ibility and indicates that since the deeply trapped particles

provide the compressibility, a mode that is felt by more
deeply trapped particles is more stable.

Drift modes can depend on parallel dynamics as is the
case with the so-called “universal instability” and the slab
“ »; mode.” These modes have finikg and do not conserve
the second invariant], and it is therefore not appropriate to
C. Collisional electron modes, the dipole  7; mode bounce average the drift kinetic equation for the ion re-

Electrons are more collisional than ions at the same temsPONSe.
perature and the difference in the electron and ion responses 10 analyze the stability of modes with finikg we apply
deriving from the difference in collisionality can drive insta- Ed- (2) for the ion response and keep thevelocity depen-
bility. When the electrons are sufficiently collisional they dence in the ion curvature drift frequency. Using B8c)
have an adiabatic response to fluctuating electric fields2nd averaging the perpendicular ion drift we obtain the esti-

Modes that result from collisiongadiabati¢ electrons and Mate

collisionless ions can be viewed as a limiting case of the k, )

dissipative trapped ion mode. This mode is destabilizeg; as P4~ R (vi+Tp). (10
increases and is analogous to the tokamak toroigal 0re

model* For electrons we assume an adiabatic response gipce

To obtain a estimate of this instability we assume that>w. Substituting Eq(10) into (2) and replacingb-V by
the electron response is adiabatic, i"f'e;,qquof_ Then the Kjv; in the ion term we obtain the follow dispersion relation:
sum over species in E) is reduced to the ion term. In Fig. 26 Fr(HIT) @
2 we plot the marginal stability boundady, ,/@q Vs K, p; =T WA —Bwwyg)
with 7;,=2 for both the collisional electron mode and for the t di
collisionless interchange mode. We observe that the colli- X (1= (K, p)2)(W(L) = W)+ 7i(1—(k, p)?)
sional electron mode does not become unstable unless the
pressure gradient is about a factor of 2 larger than the critical X(La= Lo+ EEW(LL) = W], (11

[(o/ @, nit+1—7i/2)
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with instability. The nonlinear consequence of this instability may

KR KRO.\2 o 112 be _the _develo_p_ment of (_:onvec_tive cells which could serve to
L= ( I °') — (12  maintain a critical density profile.

- 2k 2k, vy 2wq; For the collisionless curvature driven modes we have

The thermal speed)t2=2Ti/mi, wgi=k, T;i/(MRyQ¢i0) seen that extended, i.e., interchange modes, are more un-
and stable than modes that are localized in the low field region.
This result is opposite to the standard trapped particle result
W(Z) = i J""’ “dx and may be understood as an indication that the deeply
Jr J—e x=0 7 trapped particles are localized to the region with the largest
) _ ) ' field gradient and therefore have the largest compressibility
For Im(%)>0, Wis equal to the plasma dispersion functidn v en stabilization
Z({), and for !m@“)<0, W(§)= —Z(={). . It is believed that they; mode plays an important role in
_ The Nyquist analysis of Eq11) varying 7, ki p, and  hormpg transport for a tokamak. Thg mode is driven by
@, [ &p always indicates stability. This is not surprising be-yhe temperature gradient and there is an associated pressure
cause it is known that Landau damping will be strongly sta-yient. For a tokamak this mode can be unstable while the
bilizing unlessv;<w/k;<ve. In a levitated dipole the field  535ma maintains MHD stability due to the good curvature in
lines are closed and we can impose the condikipRM/R:  {he outer torus. For a dipole the pressure gradient associated
with R the radius of curvature anth=1. Sinc€w~wq  jth the temperature gradient will destabilize interchange
=vi(k.pi)/R. the first inequality; <w/k; can be written as  ,,4eg pefore it will destabilize, modes. Stabilization from
k, pi>1. This indicates that the mode will be strongly Lan- compressibility requires thaR,,Vp/p<y (y=5/3). For a
dau damped whek, p;<1. The observed stability of these tokamak(R,)Vp/p~A, with A the aspect ratio and since a
modes is a result of the field line length being insufficient in,, 2 mak will typically haveA=2 compressibility will not

a dipole field to support the relatively long parallel wave-qmajly be important. A low aspect ratio tokamak, on the
length of these modes. other hand, can gain substantial stabilization from compress-
ibility.
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