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Plasma confined in a magnetic dipole is stabilized by the expansion of the magnetic flux. The
stability of low beta electrostatic modes in a magnetic dipole field is examined when the distribution
function is to lowest order Maxwellian. It is shown that for sufficiently gentle density and
temperature gradients the configuration would be expected to be stable to magnetohydrodynamic
interchange, as well as to dissipative trapped ion and collisionless trapped particle modes. These
results are applicable to any magnetic configuration for which the curvature drift frequency exceeds
the diamagnetic drift frequency. ©1997 American Institute of Physics.@S1070-664X~97!03602-1#
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I. INTRODUCTION

The dipole magnetic field is the simplest and most co
mon magnetic field configuration in the universe. It is t
magnetic far field of a single, circular current loop, and
represents the dominant structure of the middle magn
spheres of magnetized planets and neutron stars. The us
dipole magnetic field generated by a levitated ring to confi
a hot plasma for fusion power generation was first cons
ered by Hasegawa.1 As a confinement configuration for mag
netic fusion, a dipole possesses uniquely good proper
The coil set is simple and axisymmetric. Operation is inh
ently steady state and the large flux expansion is expecte
simplify the divertor design.Vis-à-vis a tokamak, there is no
need for current drive and no disruptions. It is expected
have good magnetohydrodynamic~MHD! properties, includ-
ing plasma pressures that can locally exceed the magn
pressure, i.e.,b.1, and excellent confinement properties. B
levitating the dipole magnet in order to prevent end losse
a conceptual reactor, studies have supported the possib
of a dipole based fusion reactor.2–4 In this paper we will
focus on the stability of drift modes that are thought to d
grade confinement in fusion grade plasmas.

For a plasma confined in a levitated dipole the press
falls off ~moving away from the internal coil! in a region of
‘‘bad’’ curvature. In this situation it is well known that sta
bility can be obtained due to the so-called compressibil
and there is a critical value of the pressure gradient that
be confined stably. The dipole reactor concept is based
the idea of generating pressure profiles near marginal st
ity for low-frequency MHD fluctuations. From ideal MHD
the marginal stability of interchange modes results when
pressure profile satisfies the adiabaticity conditio
d~pVg!50, with p the plasma pressure,V is the flux tube
volume, andg55/3. We derive the equivalent conditio
from the drift kinetic equation. In the derivation of the di
persion relation for low frequency interchange modes fr
the drift kinetic equation the stabilizing term derives fro
the square of the curvature drift frequency@Eq. ~8!# and there
is no need to make the assumption of an equation of s
This derivation therefore derives from first principles a
clarifies the origin of compressibility in MHD.

The ability to confine plasma at high beta makes
dipole configuration particularly well suited as an advanc
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fuel reactor. Ignition in advanced fuel plasmas such as D3He
requires particularly good confinement properties. Since
magnetic field is entirely in the poloidal plane there are
particle drifts off the flux tubes~which in a tokamak result in
a ‘‘neoclassical’’ degradation of confinement!. In this paper
we show that plasma confined in a levitated dipole may
expected to be free of drift wave turbulence and therefor
dipole based reactor may be expected to attain classical
finement.

Hasegawa has pointed out1,2 that when the plasma is
sufficiently collisionless, the equilibrium distribution func
tion may be described byF05F0(m,J,c), with m the first
invariant,m5v'

2 /2B, J the second invariant,J5rds v i , and
c the flux invariant. For fluctuations in the range of the cu
vature drift frequency, flux is not conserved and a collisio
less plasma can approach the state]F/]c→0. Furthermore,
when]F/]c50 the plasma can be shown to be stable to d
frequency fluctuations. This condition leads to dipole pr
sure profiles that scale with radius asr220/3, similar to ener-
getic particle pressure profiles observed in the plane
magnetospheres.5,6

In a conceptual reactor, confinement must be maintai
on a collisional time scale. Therefore, we would expect
distribution function to be, to lowest order, Maxwellian, i.e
F0(m,J)→F0(e,c) and therefore]F/]cÞ0. In this article
we assume to lowest order a Maxwellian distribution fun
tion for both ions and electrons and we derive the condit
for marginal stability to MHD interchange modes, as well
collisionless and dissipative trapped ion modes. We find t
each of these collective modes becomes stable when the
sity and temperature gradients are sufficiently gentle. The
fore, a plasma confined in a levitated dipole field may
expected to be particularly stable to collective modes a
for sufficiently gentle gradients, may exhibit classical co
finement.

These results are applicable to any magnetic configu
tion for which the curvature drift frequency is comparable
the diamagnetic drift frequency, such as a low aspect r
tokamak.

II. ELECTROSTATIC, TRAPPED PARTICLE MODES

To derive the stability criterion for electrostatic mod
we consider a fluctuating electrostatic potential,f and ignore
419/4/$10.00 © 1997 American Institute of Physics
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any equilibrium electrostatic potential. From Faraday’s law
is possible for a perturbation to leave the magnetic field
disturbed ifE52“f, which is consistent withb!1. If f
varies along a field line, there will be a finiteEi ~a situation
not possible in ideal MHD theory!.

We analyze the stability of such a perturbation under
assumptions that the wave frequencyv is less than the cy-
clotron frequencyVc and that the ion Larmor radiusri is
shorter than the perpendicular wavelengthl52p/k' which
is, in turn, short compared to a parallel wavelength, 2p/ki .
The appropriate equation for the distribution functionf̃ is7,8

f̃5qfF0e5J0~k'r!h ~1!

andh satisfies

~v2vd1 iv ib–“8!h52~v2v* !qfF0eJ0~k'r!

1 iC~h!. ~2!

F0~e,c! is the equilibrium distribution function and“8 is the
gradient at constante andm

F0e[
]F0

]e
, ~3a!

v*5
b3k'–“8F0

mVcF0e
, ~3b!

vd5k'–b3
~mv i

2b–“b1m“B!

mVc
, ~3c!

B5“c3“u, ~3d!

b5B/uBu. ~3e!

J0(k'r) is the Bessel function of the first kind andu is the
azimuthal angle.

We consider a perturbation whose growth time is lo
compared to a particle bounce time and obtain the result
h is a constant along a field lineh5h0~e,m,c!. We can then
determine the constant by taking the time average of Eq.~3!,

h05
2~v2v* !qf̄F0eJ0

~v2v̄d1 inq!
. ~4!

The overbar indicates a time average

f̄5
1

tB
E dl

uv iu
f, ~5a!

tB5E dl

uv iu
. ~5b!

For simplicity the collision operator has been replaced b
Krook model in Eq.~4!, i.e.,C(h)→2n jh with nj the ap-
propriate collision frequency.
420 Phys. Plasmas, Vol. 4, No. 2, February 1997
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III. FAST GROWING MODES

To explore modes that grow on the MHD time scale w
assume thatv.v̄d.n j and expand the denominator of E
~4! to obtain for the perturbed particle distribution functio

f̃5qfF0e2qf̄F0eJ0
21Fb3k'–“8F0

mVcv
2

v̄d

v
F0e

1
b3k'–“8F0

mVcv

v̄d

v
2

v̄d
2

v2 F0eGqf̄J0
2. ~6!

We determine the eigenfrequencyv by requiring that the
mode be quasineutral. We expandJ0

2 as J0
2}12(k'v')

2/
2Vc

2 in the first term, but neglect thek'
2r i

2 correction in the
second term. With these assumptions the quasineutrality
dition becomes

O5(
q

q2E d3vH F0e~f2f̄ !1f̄
k'
2v'

2

2Vc
2 F0e

1~v* v̄d2v̄d
2!
F0e

v2 f̄J . ~7!

The terms proportional to 1/v have canceled in the sum ove
species. Consider first the case when the eigenmode is fl
like, i.e., f'f̄, Ei50. In this limit we can solve forv2 to
obtain

v25
(qq

2*d3v F0ev̄d~v̄d2v* !

(qq
2*d3v F0ek'

2v'
2 /2Vc

2 . ~8!

In our conventionv
*

.0 and for a dipole there is ‘‘bad’’
curvature, i.e.,v̄d.0. Flute-like ~interchange! modes are
nevertheless stable when*d3v F0(v̄d

22uv
*

v̄du).0. Defin-
ing ṽ

*
5*F0v*

d3v, ṽd
25*F0v̄d

2 d3v and approximating
*F0v*

v̄d d
3v'(11h)ṽ

*
ṽd with h5“ ln(T)/“ ln(n), we

see that stability requires

ṽd.~11h!ṽ* , ~9!

i.e., r
*

.Rc with r
*

;p/“p andRc is the radius of curva-
ture.

Under some circumstances non-flute-like ‘‘trapped p
ticle’’ modes can grow on the MHD time scale.9 These fast
growing modes can be investigated by constructing a q
dratic form. We multiply Eq.~7! by f* /B and perform a flux
tube (*dl/B) integration. Writing

E d3v5
2pB

m2 E de dm

v i

interchanging the order of integration, and solving forv2

gives
2v25
(qq

2~2p/m2!*de dm tBf̄
2

F0e~ v̄d

2
2v* v̄d!

(qq
2~2p/m2!*de dm tB~2F0e!$~f22f̄

2

!1f̄
2

k'
2r i

2%
. ~10!
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The quadratic form, Eq.~10! is variational with respec
to f and since the denominator is positive definite, if we c
find a trial function forf such thatv2,0 the true eigenfunc-
tion will give an even larger growth rate. The numerator
Eq. ~10! can be positive for regions where the magnetic fi
curvature is concave with respect to the plasma ifv

*
.v̄d .

When the drive is localized the eigenfunction tends to c
centrate in these regions. The denominator, however, is s
for trial functions which are spread out. The actual eige
function is determined by the balance between concentra
in regions of high curvature to make the numerator lar
and spreading as much as possible to make the denomi
smaller. For a mode that localizes on the outer midplane
the torus the deeply trapped particles feel the full strength
the mode while the passing particles feel a reduced ‘‘av
age’’ fluctuation.

For a dipole we have seen from Eq.~9! that interchange
stability requires thatṽd.v

*
. Since for a dipole,vd is larg-

est at the outer midplane, we see that when a levitated di
is stable to interchange modes it will also be stable to
growing trapped particle modes.

IV. DRIFT FREQUENCY MODES

Lower frequency modes can be destabilized by the re
nance atv5v̄d @Eq. ~4!#. To evaluate the stability of the
resonant modes we begin with Eq.~4! and apply quasineu
trality

(
q

q2E d3v F0ef

5(
q

q2E d3v J0
2F0ef̄Fv2b3k'–“8F0 /~mVcF0e!

v2v̄d1 inq
G .

~11!

Multiplying Eq. ~11! by f* and taking a flux tube averag
yields

~11Te /Ti !E d3v F0f
2

5(
q
E d3v J0

2F0ef̄
2Fv2b3k'–“8F0 /~mVcF0e!

v2v̄d1 inq
G .
~12!

The bounce-averaged quantities,f2 and f̄
2

are in general

functions of the pitch angle. For a flute-like modef2 5 f̄
2

and we will show below that such modes are not unstable
trapped particle driven mode is localized to the outer m
plane so that trapped particles experience the mode m

strongly than passing particles andf2 . f̄
2

. To obtain an
approximate dispersion relation for the collisionless trapp
particle modes we extract an average value of the bou

average quantities,f̄ and f̄
2

and rewrite Eq.~12! as
Phys. Plasmas, Vol. 4, No. 2, February 1997
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~11Te/Ti!

ft
5(

q
Ed3v

3J0
2F0eFv2b3k'–“8F0 /~mVcF0e!

v2v̄d1 inq
G . ~13!

For constantf„f5f̄5(f2)1/2…, f t51. For a mode that is
localized near the outer midplane or which changes s
from the outside to the inside the trapped particles feel
mode more strongly~f̄ tapped;fmax! than the passing par
ticles ~f̄pass;0! and it can be seen thatf t is related to the
trapped particle fraction.

For a dipole the curvature drift is fairly uniform alon
the field line and we can approximatev̄d→(e/T)* v̂d in Eq.
~13! to obtain

K v2v* n@11he~e/Te2~3/2!!#

v2v̂d~e/Te!1 ine
L

1 K vt1v* n@11h i~e/Ti2~3/2!!#

v1~v̂d /t!~e/Ti !1 in i
L 5~11t!/ f t , ~14!

where^A&[(2/p1/2Tj
3/2)*0

`de e1/2 exp(2e/Tj )A, t[Te/Ti ,
v
* n

[2v
* ni

t52kur iv it/2r n , v i5(2Ti /mi)
1/2, r i5v i /

V i , V i5eB/mic, ku5m/r , r n52~d ln n/dr!21, vd[(vd)e
52(vd) it5kur iv it/2RC.0, h j[d ln Tj /d ln nj , andv

* n
:0 for dn/dr"0.

For Te5Ti Eq. ~14! simplifies

K v2v* n@11h~e/T2~3/2!!#

v2v̂d~e/T!1 ine
L

1 K v1v* n@11h~e/T2~3/2!!#

v1v̂d~e/T!1 in i
L 52/f t . ~15!

V. COLLISIONLESS RESONANT MODE

Equation~14! was analyzed by Taggeret al.10 and by
Tanget al.11 for the tokamak case, i.e., whenv̂

*
.v̂d . We

have seen that for a dipole MHD stability requiresṽ
*

,ṽd .
Consider first the collisionless mode (ne;n i;0). If we

defineV5v/v̂d , V
*

5v
* n
/v̂d andV

* T
5hV

*
Eq. ~15! be-

comes

K V1V* T~3/221/h2e/T!

V2e/T L
1 K V2V* T~3/221/h2e/T!

V1e/T L 5
2

f t
. ~16!

Noting that

K V1A

V1e/TL 511 K A2e/T

V1e/TL
Eq. ~16! can be written as

K V* T~3/221/h!/~12V* T!1e/T

V2e/T L
2 K V* T~3/221/h!/~12V* T!1e/T

V1e/T L 5
2/f t22

12V* T
. ~17!
421J. Kesner
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Equation ~17! has complex solutions,V5Vr1g. Consider
marginal stability,V5Vr5V0, with V0.0. The singularity
in Eq. ~17! is removed when

V052
V* T~3/221/h!

12V* T
. ~18!

Substituting into Eq.~17! we obtain an equation forV0

K V02e/T

V01e/TL 511
~2/f t22!

~12V* T!
. ~19!

Since^(V02e/T)/(V01e/T)&,1, Eq.~19! does not have a
solution whenf t51, which indicates that a flute-like mod
would not be unstable. For a marginally stable solution
exist the right hand side of Eq.~19! must be,1 and there-
fore V

* T
.1. From Eq.~18! we observe that whenV

* T
.1,

marginal stability is obtained forh.2/3. A comparison with
the solutions to the dispersion relation obtained in Ref.
indicates that this is a necessary condition for the existe
of unstable solutions. Therefore, whenh.2/3, the condition
V
* T

, 1 is a sufficient condition for stability. From the so
lutions that appear in Ref. 10 we observe that typica
0.5,V0,2. Rewriting the stability condition we obtain

v̂d.v̂* T ~20!

with v̂* T5hv̂
*
. Normally h.1 and this condition is less

restrictive than the interchange condition:uv̂du.v̂
*
(11h).

VI. DISSIPATIVE TRAPPED ION MODE

In the simplest approximation the dissipative trapped
mode can be derived by assuming collisional electrons
collisionless ions, i.e., by taking the limitne→` andni→0.
In this limit Eq. ~17! would be replaced by

K e/T1V* T~3/221/h!/~12V* T!

e/T2V L 5j, ~21!

with j5(2/f t21)/(V
* T

21). The marginally stable solution
to Eq. ~21! is V5V05~3/221/h!/~V

* T
21! and j51, i.e.,

V
* T

52/f t ~as pointed out in Ref. 11!. Notice that this solu-
tion of Eq.~21! is possible whenf t51 which corresponds to
a flute-like mode. This indicates that the dissipative mod
driven by the difference in the~collisional! electron and the
~collisionless! ion response and instability does not require
localization of the mode in the trapped particle region.

If we takeV5V01dV1ig and j511D with D.0 the
imaginary part yields a constraint

K V01e/T

V21g2 L 50, ~22!

while the real part gives

D52 K dV21g2

V21g2 L ,
i.e., D,0. This indicates that there is no unstable solut
whenj.1, i.e., whenV T,2/f t . Thus a sufficient condition
*
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for stability is v̂d.v
* T
/2. This condition is less restrictive

than the stability condition for either the collisionless mo
or the interchange mode.

VII. DISCUSSION

The results shown above are generally applicable t
magnetic confinement device that that is stabilized by co
pressibility, i.e., one that satisfy’s the inequalityṽd.v

*
.

For a tokamakv
*
/v̄d;A with A the aspect ratio, so that th

compressibility is usually considered to be a small corr
tion. For a low aspect ratio tokamak, however, the stabiliz
compressibility term can become important.

The dipole reactor concept is a radical departure fr
the tokamak or from other similar toroidal magnetic fusi
reactor concepts. The magnetic field lines are closed,
field is poloidal and the flux surfaces are defined by the t
oidal drifts. There are no drifts off the flux surfaces and t
dipole is not subject to neoclassical effects. In addition
high degree of axisymmetry inherent in the coil set insu
the absence of nonaxisymmetry driven ‘‘ripple’’ losses.

Hasegawa2 considered a collisionless plasma confined
a dipole that is characterized by an equilibrium distributi
function which is non-Maxwellian. He showed that when t
equilibrium distribution function can be characterized
F05F0(m,J), i.e.,]F0/]c50, drift frequency modes are no
unstable.

We have shown that in the more fusion relevant ca
whenF0 is Maxwellian and therefore]F0/]c,0, the dipole
may still not be subject to drift frequency fluctuation
Therefore a magnetic dipole based fusion reactor may
hibit classical transport.
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