Stability of electrostatic modes in a levitated dipole
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Plasma confined in a magnetic dipole is stabilized by the expansion of the magnetic flux. The
stability of low beta electrostatic modes in a magnetic dipole field is examined when the distribution
function is to lowest order Maxwellian. It is shown that for sufficiently gentle density and
temperature gradients the configuration would be expected to be stable to magnetohydrodynamic
interchange, as well as to dissipative trapped ion and collisionless trapped particle modes. These
results are applicable to any magnetic configuration for which the curvature drift frequency exceeds
the diamagnetic drift frequency. @997 American Institute of Physi¢§1070-664X97)03602-1]

I. INTRODUCTION fuel reactor. Ignition in advanced fuel plasmas such #seD
requires particularly good confinement properties. Since the
The dipole magnetic field is the simplest and most com-magnetic field is entirely in the poloidal plane there are no
mon magnetic field configuration in the universe. It is theparticle drifts off the flux tubeéwhich in a tokamak result in
magnetic far field of a single, circular current loop, and ita “neoclassical” degradation of confinemgnin this paper
represents the dominant structure of the middle magnetowe show that plasma confined in a levitated dipole may be
spheres of magnetized planets and neutron stars. The use oé@pected to be free of drift wave turbulence and therefore a
dipole magnetic field generated by a levitated ring to confinalipole based reactor may be expected to attain classical con-
a hot plasma for fusion power generation was first considfinement.
ered by HasegawaAs a confinement configuration for mag- Hasegawa has pointed odtthat when the plasma is
netic fusion, a dipole possesses uniquely good propertiesufficiently collisionless, the equilibrium distribution func-
The coil set is simple and axisymmetric. Operation is inher{ion may be described blfy=F(u,J,¢), with u the first
ently steady state and the large flux expansion is expected fovariant,u=v?/2B, J the second invarian=g$ds v, and
simplify the divertor designVis-avis a tokamak, there is no ¢ the flux invariant. For fluctuations in the range of the cur-
need for current drive and no disruptions. It is expected tovature drift frequency, flux is not conserved and a collision-
have good magnetohydrodynaniMHD) properties, includ- less plasma can approach the stafédy—0. Furthermore,
ing plasma pressures that can locally exceed the magnetighendF/dy=0 the plasma can be shown to be stable to drift
pressure, i.e3>1, and excellent confinement properties. By frequency fluctuations. This condition leads to dipole pres-
levitating the dipole magnet in order to prevent end losses isure profiles that scale with radius @, similar to ener-
a conceptual reactor, studies have supported the possibiligetic particle pressure profiles observed in the planetary
of a dipole based fusion reactot: In this paper we will magnetosphere.
focus on the stability of drift modes that are thought to de-  In a conceptual reactor, confinement must be maintained
grade confinement in fusion grade plasmas. on a collisional time scale. Therefore, we would expect the
For a plasma confined in a levitated dipole the pressurélistribution function to be, to lowest order, Maxwellian, i.e.,

falls off (moving away from the internal coiln a region of ~ Fo(u,J)—Fo(€,4) and thereforegF/dy#0. In this article
“bad” curvature. In this situation it is well known that sta- We assume to lowest order a Maxwellian distribution func-

bility can be obtained due to the so-called compressibilitytion for both ions and electrons and we derive the condition

and there is a critical value of the pressure gradient that cafPr marginal stability to MHD interchange modes, as well as
be confined stably. The dipole reactor concept is based ofPllisionless and dissipative trapped ion modes. We find that
the idea of generating pressure profiles near marginal stabigach of these collective modes becomes stable when the den-
ity for low-frequency MHD fluctuations. From ideal MHD, sity and temperature gradients are sufficiently gentle. There-
the marginal stability of interchange modes results when théore, a plasma confined in a levitated dipole field may be
pressure profile satisfies the adiabaticity condition,€Xpected to be particularly stable to collective modes and,
8(pV")=0, with p the plasma pressurd is the flux tube fpr sufficiently gentle gradients, may exhibit classical con-
volume, andy=5/3. We derive the equivalent condition finement. . _ _
from the drift kinetic equation. In the derivation of the dis-  1hese results are applicable to any magnetic configura-
persion relation for low frequency interchange modes fromfion for which the curvature drift frequency is comparable to
the drift kinetic equation the stabilizing term derives from the diamagnetic drift frequency, such as a low aspect ratio
the square of the curvature drift frequeri&g. (8)] and there ~ tokamak.
is no need to make the assumption of an equation of state.
This derivation therefore derives from first principles and,, g £cTROSTATIC, TRAPPED PARTICLE MODES
clarifies the origin of compressibility in MHD.

The ability to confine plasma at high beta makes the To derive the stability criterion for electrostatic modes
dipole configuration particularly well suited as an advancedve consider a fluctuating electrostatic potentighnd ignore
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any equilibrium electrostatic potential. From Faraday’s law itlll. FAST GROWING MODES

is possible for a perturbation to leave the magnetic field un- )
disturbed ifE=—V, which is consistent with<1. If ¢ To explore modes that grow on the MHD time scale we

varies along a field line, there will be a fini (a situation ~2SSUme tha>w,>v; and expand the denominator of Eq.
not possible in ideal MHD theojy (4) to obtain for the perturbed particle distribution function

We analyze the stability of such a perturbation under the bxk. -V'En @

. . ri - 2 1 0 wg
assumptions that the wave frequeneyis less than the cy- f=q¢Foc—qepFodst Tmoe o o
clotron frequency(), and that the ion Larmor radiug is M3lew @
shorter than the perpendicular wavelength27/k, which bxk,-V'F, g 33‘ _
is, in turn, short compared to a parallel wavelength/k?. oo o o2 Foe ngJ%. (6)

C

The appropriate equation for the distribution functibis’®
We determine the eigenfrequeneyby requiring that the

F=a¢Foe=Jo(k p)h D mode be quasineutral. We expadg as J3x1—(k,v,)?
andh satisfies 202 in the first term, but neglect thi€ p? correction in the
—wativb- V= — (- Eo (K second term. With these assumptions the quasineutrality con-
(w—wgtiv ) (0= w,)qpFodo(k.p) dition becomes
+iC(h). (2

— —k%?
0=3 qu d3v[Foe<¢—¢>+¢ﬁFoe
q c

Fo(e) is the equilibrium distribution function and’ is the
gradient at constard and u

dFo — Foe
Foe=——. (33 (0, 0= w5) — ﬂ 7
_bxk,-V'F, b The terms proportional to &/have canceled in the sum over
@x = mQ.Fo. (3D) species. Consider first the case when the eigenmode is flute-
like, i.e., ¢=~¢, E;=0. In this limit we can solve fow? to
(mv2b-Vb+ uVB) obtain
wg=k, -bx , (30 23 -
mQ¢ w2:2qq [d°v Fpeogq(wg—w,) ®
B=VyxVa, (3d) 3,93 d% FokZv2/202
b=B/|B|. (39  In our conventionw, >0 and for a dipole there is “bad”

curvature, i.e.,wq>0. Flute-like (interchange modes are
nevertheless stable whedit®y Fo(w3—|w, wg|)>0. Defin-
ng @, =JFo0,d%, @3=[F,035 d® and approximating
Fow, wg d®v~(1+ )@, @4 with 7=V In(T)/V In(n), we
fee that stability requires

Jo(k, p) is the Bessel function of the first kind ardis the
azimuthal angle. i
We consider a perturbation whose growth time is long
compared to a particle bounce time and obtain the result th
h is a constant along a field lire=hy(e,«,). We can then
determine the constant by taking the time average of(&yg. o> (1+np) o, , 9)

(o w,)dbFodo

h i.e., r,>R. with r ~p/Vp andR. is the radius of curva-
o (0—wgt+ivg)

(4) ture.

Under some circumstances non-flute-like “trapped par-
ticle” modes can grow on the MHD time scalélhese fast

The overbar indicates a time average

— 1 dl growing modes can be investigated by constructing a qua-
= T_B m ¢, (58 dratic form. We multiply Eq(7) by ¢*/B and perform a flux
tube (fdI/B) integration. Writing
dl
=] . 5b
. f |Uu| (5b) f d3U:27TZB j de du
m U

For simplicity the collision operator has been replaced by a
Krook model in Eq.(4), i.e., C(h)— —v;h with v; the ap- interchanging the order of integration, and solving fofr
propriate collision frequency. gives

—2 _2 _
e 340%(2m/m?) [de du 75¢ Folwyg— w, oq)

o . (10
S0P 2mIm?) fde i o ~Fol(F— 6 )+ 6 K p?
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The quadratic form, Eq(10) is variational with respect (1+T/T)
to ¢ and since the denominator is positive definite, if we can— E fdg
find a trial function for¢ such thatw?<0 the true eigenfunc-
tion will give an even larger growth rate. The numerator of
Eq. (10) can be positive for regions where the magnetic field ><Jo O¢
curvature is concave with respect to the plasma,if>wy.
When the drive is localized the eigenfunction tends to conFor constantp(¢= ¢=($)'?), f,=1. For a mode that is
centrate in these regions. The denominator, however, is smdfcalized near the outer mldplane or which changes sign
for trial functions which are spread out. The actual eigenfrom the outside to the inside the trapped particles feel the
function is determined by the balance between concentratinflode more strongly(¢appeq~dmax) than the passing par-
in regions of high curvature to make the numerator largeficles (¢,ass-0) and it can be seen thdt is related to the
and spreading as much as possible to make the denominatégpped particle fraction.
smaller. For a mode that localizes on the outer midplane of For a dipole the curvature drift is fairly uniform along
the torus the deeply trapped particles feel the full strength othe field line and we can approximatg— (e/T)* @4 in Eq.
the mode while the passing particles feel a reduced “aver(13) to obtain
age” fluctuation. _ B

For a dipole we have seen from E§) that interchange <w Dx ”[1A+ 7e( E/Te_ (3/2))]>
stability requires thab 4> w, . Since for a dipolegw is larg- W= 0g(elTe) +ive
est at the outer midplane, we see that when a levitated dipole N < w0+, [1+ 7,(el T~ (312)]

w=bXK, -V Fo/(MOeFod) |

w— wd-HVq

(13

is stable to interchange modes it will also be stable to fast

> =(1+nlf,, (19
growing trapped particle modes.

w+(fud/’r)(6/T-)+ivi
where(Ay=(2/7"*T¥?) [Gde €2 exp(— e/ T))A, =TJT;,
W n=— Wy niT= kgp,v Tl2r,, vi= (2T/m)1’2 pi=vil
IV. DRIFT FREQUENCY MODES Qi, Qi=eBmic, k,=m/r, ry=—(d Inn/dr) %, 04=(wd)e
= —(wd)i7'= kgpiUiT/ZRC>0, T]JEd In TJ/d In nj , andw*n
Lower frequency modes can be destabilized by the reso=0 for dn/dr=0.
nance atw=wq [Eq. (4)]. To evaluate the stability of the For T.=T, Eq. (14) simplifies
resonant modes we begin with E@) and apply quasineu-
w—wg(elT)+ive

2 q2 d3v F E¢ w+w*n[1+ 7](6/T_(3/2))] _
q J ° + w+oy(elT)+iy =2/t (15)

-3 qu & I2F, g bxk, -V'Fo/(mQcFoc)| v, COLLISIONLESS RESONANT MODE
q 0" 0e w—wgtivg
(11) Equation(14) was analyzed by Taggest al® and by
Tanget all! for the tokamak case, i.e., when, > &4. We

Multiplying Eq. (11) by ¢* and taking a flux tube average have seen that for a dipole MHD stability requii@s <.

yields Consider first the collisionless modet~ v;~0). If we
defineQ=wlay, O, =w, /o4 andQ, =78, Eq. (15) be-
5 — comes
1+T/T; fd v F
(1+Te/T) o¢ Q+Q, (32— 1n—€lT)
bxk, V' Fo/(MQ:Fo,)| Aot
_ 3 w—DbX 0 m Oe
Z fd v BFods o—wg+ivg Q-0 1(32-1n—elT)| 2 16
(12) O+€lT fi
o 2 Noting that
The b - d tities; and i I
e bounce-averaged quantities? and ¢ are m_genirza O+ A T
functions of the pitch angle. For a flute-like mogé = ¢ Q+eT =1+ QO+eT

and we will show below that such modes are not unstable. A
trapped particle driven mode is localized to the outer mid-Eq. (16) can be written as

plane so that trapped particles experiﬂce the mode mor<aQ*T(3/2_ 1/77)/(1—Q*T)+6/T>

strongly than passing particles aﬁ > ¢ . To obtain an
approximate dispersion relation for the collisionless trapped
particle modes we extract an average value of the bounce <Q*T(3/2— 1/7,)/(1—Q*T)+E/T> 2/f—

_ _2 _ _
average quantitiesp and¢ and rewrite Eq(12) as Q+elT 1-Q,1

O—¢€lT

(17
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Equation (17) has complex solutions)={),+vy. Consider for stability is @3> w, /2. This condition is less restrictive
marginal stability,Q=0,=0,, with Q¢>0. The singularity than the stability condition for either the collisionless mode

in Eq. (17) is removed when or the interchange mode.
Q= — Ler3271/m) (19  VII. DISCUSSION
1-0Q '

o *T _ . The results shown above are generally applicable to a
Substituting into Eq(17) we obtain an equation fd, magnetic confinement device that that is stabilized by com-
Qo—elT (2/f,—2) pressibility, i.e., one that satisfy’s the inequali®,>w, .
<Qo+ s/T> =1+ 1=, (199  For atokamake, /wy~ A with A the aspect ratio, so that the

compressibility is usually considered to be a small correc-
Since((Qq— e/ T)/(Qy+€/T))<1, Eq.(19) does not have a tion. For a low aspect ratio tokamak, however, the stabilizing
solution whenf,=1, which indicates that a flute-like mode compressibility term can become important.
would not be unstable. For a marginally stable solution to  The dipole reactor concept is a radical departure from
exist the right hand side of E419) must be<1 and there- the tokamak or from other similar toroidal magnetic fusion
fore Q,t>1. From Eq.(18) we observe that whefd, 1>1, reactor concepts. The magnetic field lines are closed, the
marginal stability is obtained fof>2/3. A comparison with field is poloidal and the flux surfaces are defined by the tor-
the solutions to the dispersion relation obtained in Ref. 1idal drifts. There are no drifts off the flux surfaces and the
indicates that this is a necessary condition for the existencdipole is not subject to neoclassical effects. In addition the
of unstable solutions. Therefore, whei»2/3, the condition  high degree of axisymmetry inherent in the coil set insures
Q, 1< 1 is a sufficient condition for stability. From the so- the absence of nonaxisymmetry driven “ripple” losses.
lutions that appear in Ref. 10 we observe that typically — Hasegaw&aconsidered a collisionless plasma confined in
0.5<Qy<2. Rewriting the stability condition we obtain a dipole that is characterized by an equilibrium distribution
(20) function which is non-Maxwellian. He showed that When the

equilibrium distribution function can be characterized by
with @, t=no, . Normally >1 and this condition is less Fo=Fo(u,J), i.e.,dF y/ay=0, drift frequency modes are not
restrictive than the interchange conditidéiy| > @, (1+ 7). unstable.

We have shown that in the more fusion relevant case,

VI. DISSIPATIVE TRAPPED ION MODE whenF, is Maxwellian and thereforéF y/dy<0, the dipole

In the simplest approximation the dissipative trapped ion@y Still not be subject to drift frequency fluctuations.
mode can be derived by assuming collisional electrons andnérefore a magnetic dipole based fusion reactor may ex-
collisionless ions, i.e., by taking the limi,— and»—0.  hibit classical transport.

In this limit Eq. (17) would be replaced by

W= Wy T
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