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Electrostatic drift modes in a closed field line configuration
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The stability of electrostatic drift waves in a closed field line configuration in collisionality regimes
ranging from collisional to collisionless is compared. The maximum sustainable pressure gradient is
found to be dependent on the ratio of the temperature and density gradjeatsli§ T/dInn). The
eigenmodes are seen to be flute-like. The stability boundary was found to be similar when both ions
and electrons are collisional, when they are collisionless, and for collisional electrons and
collisionless ions. The largest stable pressure gradients are obtainge 8. As the collisionality

is reduced one observes some reduction of the region of stability20@2 American Institute of
Physics. [DOI: 10.1063/1.1431594

I. INTRODUCTION For a collisionless plasma and considering low fre-
quency perturbations that conserve the adiabatic invariants
Closed field line systems, such as a levitated dipole, proandJ, particles that are magnetically trapp@d the particles
vide a promising new approach for the magnetic confinemenfoy closed field lines change energy as the field lines com-
of plasmas for controlled fUS'_C?hZ- The plasma in a closed pregs. This effect has been shown to correspond exactly to
fleldﬂllne.system can be stabilized in 'so-called “bad curva-ih o MHD plasma compressibility. For passing particles, how-
ture regions by plasma cqmpre§S|b|l|ty. n magnetohyd.ro-ever, the passing particles sample the entire flux surface and
Sgg%rgggrgljg)r;ﬁgg ts(;asligl(;);IgtlirglhdalgglJe<n;/o\(/jvif1 “LT its the path integral of perturbed potential will average to Zero.
o . . a . The description of drift ballooning modes in tokamaks,
—¢dI/B and y the ratio of specific heats=5/3 in three- has been studied extensivéfy! The study of Ref. 11 indi-

dimensional systems . ; .
Recent studies which imposed a long mean free patl‘fates the importance of the parameigin expanding the

collisional ordering(defined bywy;> v, 0, w, |, wqj With region of instability in a tokamak. queyer, the _results_ in
 the wave frequencywy,; the bounce frequencyy; the this reference apply to a tokamak equilibrium and in particu-

collision frequencyw, ; the diamagnetic drift frequencyy; ~ 1ar they do not apply to the case of zero safety factor and
the curvature drift frequengyas compared with the short shear(i.e., q=s=0).
mean free path collisional MHD orderingv&> wp> o, In the collisionless regimey, w, j ,wq;>v;, drift modes

w4j, wgj) to both electrons and iofi® have shown that were shown to be stable when the MHD stability condition is
near marginal stability for MHD modesi(-~5/3) the MHD  met andy~ 2/3'2 and stability was seen to improve ksp;
mode will couple to a potentially unstable drift frequency increases, withk, the wave number perpendicular to the
mode known as the “entropy mode.” The entropy mode ismagnetic field direction ang; the ion gyro radius. For
flute-like and stability depends od and on the ration ~ >2/3 a drift frequency mode was observed and it became
=dInT/dInn, with the most stable value being=2/3. Fur-  more unstable whek, p; increased.
thermore it has been shown that ion collisional relaxation Electromagnetic effects on these modes have been stud-
(described as gyro-relaxation in Refs. Jacan destabilize the ;o4 \yonget al. have shown that finite beta effects are sta-
entropy mode "’?”d produce a weak instability in some OtherE)ilizing at low beta® They also consider the electromagnetic
wise stable regions al— 7 space’ .

. effects at very high beta, and they have shown that there can

In a short mean free path collisional plasif@s charac- be new regions of instability whegs 1.3

terized by MHD the plasma compressibility derives from A levitated diol . K LDX |
the local relationship of pressure to changing flux tube vol- evitated dipole experiment known as IS pres-

ume. The plasma is constrained to move with the field line&Ntly under constructioh.The most relevant parameter re-
but in the case of closed field lines the field does not forr@ime for LDX would have collisional but long mean free
flux surfaces and each closed field line must satisfy the equd@th electrons ¢ye>re>w,wqe) and collisionless ions. We
tion of state. This imposes a periodicity on the perturbationill, therefore, consider the stability of low beta electrostatic
that results in an important stabilizing term, the plasma commodes with this intermediate collisional ordering and com-
pressibility. For open field lines the plasma is free to flowpare our results with those obtained with collisional and col-
along field lines. This eliminates plasma compressibility.  lisionless orderings.
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Il. SOLUTION OF DRIFT KINETIC EQUATION (vﬁb-Vb+ uwVB)
wgq=k-bX
We will compare the MHD prediction with the predic- ‘ Q¢
tions of the more general plasma drift kinetic equation in the €(2(1—\B)b-Vb+\VB)
electrostatic limit. To compare the MHD result with kinetic =k-bX Q , 9
theory we define ¢
@xp= Q;m;n; @ We have defined=mv?/2, u=mv?/2B, and\= e/ . The

prime on spatial gradients indicates thatand x are held

and fixed in the differentiation. The magnetic flux functions
. 2c Rk, T $dIx/RB? and ¢ is the azimuthal angle. Assuming p?<1,
wg 0= , 2)
e 1+y(B)2 ¢dl/B (K, pi)2 A\B3 €
. N . . i . Jo(2)~1— —F— — —, (10
with R the cylindrical radial coordinates the field line cur- 2 B T,

vaturez,kg tr21e agimuthal part of the perpendicular wave num- . wh the gyro radiusp; , defined aSOizzTi/mngi. B, the

ber_ (Ki=ks+ kR_)’ and k0R=[n> 1; '\%r;e can show thad magnetic field at the field minimum at the locati&+ R,

defined above is equal W=w, /w0y~ and therefore the 440, the associated cyclotron frequency.

MHD stability requirementd< y, can be written as We consider perturbations whose growth time is long
< ey MHD 3) compared to a particle bounce time for all species and ex-

*p= Y@ pand Eq.(7) in powers of 6= w/w, with o, the bounce

We will consider the solution of the drift kinetic equation frequency, i.e., h=hg+sh;+6%h,+---. Notice &

in the high collision frequency limit for electrons and low ~ o, /w,~Kgp; and corrections to the perturbed density will

collision frequency for ions. We therefore apply the orderingenter ass®«<k3p? . To zeroth order inS we obtain from Eq.

for electronst* (7):
Qo™ Wpe™ Vo™ Wy o™ Wge™ W, 4 v”b-V’hO%O, (11
and for ions, i.e., hg=hp(e,u,4) a constant along a field line. We deter-

mine the constanh, by taking the bounce average of the
Qei> 0pi=> @y~ 0gi~ 0>V, (5 first order form of Eq(7) to annihilateh, to obtain
with Q; the appropriate cyclotron frequency.

To derive the stability criterion for electrostatic modes
we consider a fluctuating potentiap and ignore any equi- Since we will not pursue the/w, expansion to higher or-
librium electrostatic potential. From Faraday’s law it is pos-ders, we will suppress the subscript 0 in the following analy-
sible for a perturbation to leave the magnetic field undis-sis of Eq.(12). The overbar indicates a bounce time average:
turbed ifE=—V ¢ (which is consistent wittB<1).

(0= wg)ho=—(0—w,)qpIoFo.+iC(hp). (12)

The gyro kinetic equation was derived under the as- - VM/2e [ ¢(1)dl 13
sumption that the wave frequenay is less than the cyclo- Tp J1-AB’
tron frequency(). and the perpendicular wavelength ) ) i
=2m/K, is short compared to a parallel wavelengthr/R; . with _the  bounce time 7, defined as 7,

The appropriate equation for the gyro averaged distribution™ \/m/2695d”\/1_7‘5-_ ) )
functionT is therf15:16 The electron collision operator conserves particles and

energy. With the chosen ordering and these conservation

T=q¢Fo.+Jo(2)h, (6)  properties the exact form of the electron collision operator
does not enter the results.
and the nonadiabatic responisaatisfies Consider first collisional electrons following Ref. 3. We
(0—wgtivb- V)=~ (0—0,)qdFode(Z) +iC(h). analyze Eq(12) in the high collisionality limit (e/w>1)

) and expandh, in a subsidiary orderinghe=hg+h;+---.

) o ) To lowest order we find thdt, is proportional to a Maxwell-

In Eq. (7) C(h) is the collision operatoto(Z) is the Bessel  jan distribution functionfF,, multiplied by a perturbed den-
function of the first kindFo(e,4) is the equilibrium distri-  sjty SN, and having a perturbed temperatiie 5T.'* Ex-

bution function, i.e., panding to first order we obtain
m |32 m 32
E :(_) noe €7, (8 — —el(T+4T)
0 24T 0 hoe ON 21T(T+ 5_|_) e
and N o6T(e 3”F 14
kv, IFo bXk-V'Fy no T\T 2/
Z= v Foe=s—— o,=—0——, L .
Q¢ de mQFo. To next order the drift kinetic equation becomes
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(0= wg)hg=—(0—w,)qpIoFo.+iC(hy). (15)

We can obtain the perturbed density and temperature for the
electron species by annihilating(h;) with the two opera-

tors: 0.
<@d>
dl 1 0.4
B mov“/2 0.3
( ) 3/2 1/2> 1B d\ 0.2
= dlj de f . 16
3E 32 1-\B (19 0.1
Since the collision operator conserves particles and energy 0.2 0.4 0.6 0.8 1
these operators will annihilate it, i.e., A Bo
3 3 [ € 3\ — FIG. 1. Bounce averaged curvature drift frequerﬁ{i normalized to
é dVBI d*vC(h)= é d”BJ d*v| 5 —5]C(h)=0. oy /T [Eq. (22)] in a dipole field versuBo\ (= Bo /Byounc)-
(17)
We will define w, by My ot
. TkXb-Vn, . n Te
w ]:_—' A A - A
* nlmQ n qe< ¢) wz—w(%wde-l- Wy e)+wdew* e(:%_ 77e)
and write Te 0?— L0 wget 303,
= " — q ~ ~
w, =0, (1+7(elT—3/2)F,, (19 ET_E(_¢+<¢>Ag(w,w*e,wde))_ (24)
e

with »=dInT/dInn. Notice thatw, ,= w, (1+ 7). Taking
the flux tube and velocity space integral of Ef5) we ob-
tain the following expression for the nonadiabatic perturbe
density SN, for electrons from Eq(14):

If we assume both collisional electrons and ions so that
(}he zero gyroradlus ion response becomes similar tqZ.

With wge, @, e— wgi,®4;) We can apply quasi-neutrality to
obtaln the marginal stability condition when

@4eNo( 8Tl Te) + 0ol 0— @ IT +
SNg= deNo(0Te/Te) qie( *e)<¢> e, (20) d= E 1 377 . (25)
W~ Wde 7 1-329
with the flux tube average defined as - - :
A. Collisional electrons, collisionless ions
(%) J¢dl/B 21) In Refs. 3-5 the ion response was assumed to be colli-
dl/ ' sional. Here we assume a collisionless ion response and ig-
B nore terms of ordek? p? to obtain
andwg;, the flux tube averaged drift, defined as on__4¢, &J d3vw_w*i(l""_ﬂi(f/Ti_:g/Z))—F
ni 0~ ogi(€N) °
AIIGL) ( +V,B/B), (22)
wdj K 1 q ~ ~
av  J B =5 (- ¢+ Mi(0,0,,04)). (26
]

with U=¢dI/B. For low B, k~V,B/B and vy becomes The pitch angle dependence of the normalized bounce aver-
equal to the MHD definition given in Eq2). age driftwgi(e,\)T;/(ewq;) is shown in Fig. 1 for the mo-

To obtain (6T,/T,) we take the flux tube average and (ion of a particle in the field of a point dipole. The pitch
integrate over velocity space fore/T—3/2)X Eq. (15  apgle parametex varies in the range (@1 < 1/B,) with B,
which again annihilates the collision operator to obtain the minimum magnetic field on the outer midplane. We ob-

) - - serve thatwy; T,/ ewy; is relatively constant as a function of

OTe _ 5(ONe/Ne) e Ge77ets AT (23  pitchangle ?n a dipgle fieldit varies from 0.6 to 0.7pand to

Te 0— 30ge ' obtain the correct MHD response to ordevy(/w) when

0> w, ,0gq We will choose

Equations(20) and(23) determinesN./n and using Eq(6)
we construct the total electron density perturbatiém,/n wdi(éik)”z—wdi- (27)
=6Ng/N— e/ Te, 3T;
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This approximation is discussed further in the Appendix. To d
obtain a dispersion relation we apply quasi-neutrality. Taking %™ " T~
T,=T, and applying quasi-neutrality to Eq&4) and (26) 4\ U
yields i

2¢=A;+(p)AC. (28) 2 MHD\
Taking the flux tube average of E®8) yields a dispersion S u S
relation that does not depend on the spatial dependence o : ; ; ! ‘
the eigenfunctionp(l), - 1 2 3 4 5 M

S

2=Fi(w)+Ag, (29 I r S

where
w—o,;(1+7(elT,—3/2 -4 semi-collisional U
Fi(w)=fd3vFo il 27’(6 O ~
0= —C:)di - I . -
3T FIG. 2. The stability of semicollisionalcollisional electron-collisionless

o . ion) mode in(d,7). The stable region is shaded.
It has been shown for the collisional ordering that the

solution is fluté and we will show below that, in the colli-

sionless case the solution is also flute to ordes?. In the (F1F3—F4F )+ p(FyFs—F4F,) =0, (35)
present intermediate collisionality case, a comparison of Egs. ) ) , )
(28) and (29) shows that a flute eigenmode is also presentOne can show thatR;F;—F3F5)=—(3/2)(F1F5—F3F,)

Equation(29) can be written in the form and substituting intd35) yields the result
3
3d 3d / ey
QS(Tn_l_”) '1(Q)+92(1+’7_Tn (1—57;)(F1F3—F3F1)—0. (36)
10 o 107 7dy 0 S;:girr?tlg?LStablmy Eq.(36) yields a real frequency, inde-
3 = 5 () ,
0.=0.3218. (37)
13
+Qf — 3(1+ n)+d+5d 7y SubstitutingQ) = into Eq. (33) yields the equation for the
stability boundary:
5 10d 5dp 1+
+ ——(1+77)+———)I (Q)) - 7
3 3 2 1 d 0.65868]m. (39
N 1_0(1+ ~7d 3dgy For — 1< < 2/3 the stability boundary, EG39), is close to,
3 K 2 and below, the collisional boundary given by E5). At
marginal stability the mode has a real frequency given by Eq.
n —sd n 5d ’7) 1,(Q)=0, (31) (37) and it propagates in the electron diamagnetic direction.
3 2 We have solved Eq(29) numerically using a zero-

finding routine to obtain the eigen frequency and we have

utilized a Nyquist analysis to establish that we have found all
4 wxzefxzdx possible unstable modes.

Ih(y)=—| ——, (32 Figure 2 shows the stability diagram th- » space in

Jmlo y+2x2/3 the semi-collisional regime given by E(8). The thick line

which can be expressed in terms of error functions. Equatioft d=">5/3 is the MHD stability boundary. This appears when

(31) takes the form k, p;# 0 and the region>5/3 is unstable. Notice that at the

point where the pressure gradient vanishes,—1 andd

=0, and this is a marginally stable point. The topology of the

stability region is similar to that shown in Ref. 5 for the

. . ) entropy mode.
It can be shown analytically that there is no marginally stable \ya can add finite Larmor radiu§LR) terms in the limit
mode with{)<0. For modes wit{2>0 there are no drift- |, ~y . (this limit does not require higher order terms in

rgsonant ions and, at marginal stability, _there must be coinfhe bounce expansidnFor sufficiently small FLR correc-
cident real roots fof) so thatdD/9€1 =0, i.e., tions a MHD-like mode appears wher-5/3. For the colli-

With Q= w/wge, d=(1+ ) w, o/ ®ge, and

d
D(Q)= m7[|:1(ﬂ)Jr 7F(Q)]-F3(Q2)=0. (33

d sional case it was found that increasing FLR terms will raise
m[Fi(QH 7F(Q)]=F3(Q). (34 the stability boundary in the vicinity ofy=2/3 and reduce it

elsewheré. In the semi-collisional case discussed here we

Substituting Eq(34) into Eq. (33) yields find that FLR corrections lead to a degradation of the stabil-
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ity boundary wheny>2/3. For example, fom=2, (k, p;)? d
=0.001 the stability boundary degrades by S%om d
=5/3). Forn<2/3 no significant degradation of the stability
boundary is observed.

Rosenbluth considered a collisionless isothermal 2 i
plasma(i.e., »=0) in a closed field line system. He showed collisionless \\ """""""
that whenT.=T, an instability is always present, with zero ol entropy mode
real frequency at marginality, whehexceeds a critical value :
provided that some particles bounce in bad curvature. We
now extend this result to arbitrary valuessf and obtain an -4t
analytic expression for the stability boundary in a point di-
pole [to be compared with Eq$25) and (38)]. y o _

FIG. 3. The stability of the collisional entropy moddashedg, the semicol-

TO.Obtam a dispersion relat|on_sh|p for collisionless eIeC-Iisional mode(solid), and the collisionless modeotted with k? p?=0. The
trostatic modes we assume a collisionless electron responggip poundary is also shown.

and apply quasi-neutrality. F& p’<1 we obtain the dis-
persion relation

.
:;‘ Vi semi-collisional MHD
i 3\ 4

B. Collisionless mode //\
| \

3
ooyl 14 70 Ti_§)> 200+ Ai(d)+ Adl o) =0, (45
— 3 € o
2¢_f d*v 2 €. PFoe which we have shown requires the flute solutibg=( ).
@7 3 TWde In first order,
e 3 dNi( o)
wtwyel 1+ 7 T2 _ —2¢1+Ai(P1) + Ae( 1) + Agi(l, o) + o @1
+ f d%v ' dFoi- (39
L2E- INe(bo) — —
@ 3T o w1d°— ¢*=0. (46)
Thus
Integrating$dl/B annihilates thep, terms and determines
e l A4 AS J' Bdn — (40 w1 from
¢_ 2( e iO) \md)v )
J
where we have separated the energy and the pitch angle in- @15 -[Ai(@o)+Ae(wo)]+ jg B Mi(l,0=w0)=0.
tegrations. Taking the flux tube avera@ettingT.=T;, n, (47)
=n;) yields the dispersion relation
e i P 2 2
2= ASHAS, (41) This gives the shift inw away from wy, caused byk p;

#0. A similar perturbation analysis in the collisional and
which may be substituted into E40) to obtain semi-collisional cases show that the low frequency electro-
static mode is flute-likego=(), in leading order of a

1 Bdn — 2 2 PR, e ; ;

_ - $=0. (42) k?pi<1 expansion, in all collisionality regimes.

2) J1-\B Returning to the leading order dispersion relation, Eq.
(41) and following Ref. 8, we seek a solution with [Re]
=Im[w]=0. Inserting this into Eq(41) the velocity space
integrals can be evaluated analytically to determine the sta-
bility boundary in the form

Multiplying Eq. (42) by ¢ and taking the flux tube average
yields

dl BdA — -
) = 2 42y 2 42\

Since ¢?>— $*=0 we can conclude that the mode is flute-
like, i.e., p= ¢, to orderk? p?. For »=0, this recovers the stability result of Ref. 8; i.e.,
Introducing finitek? p?<1 the general dispersion rela- instability ford>1/3. Figure 3 displays the stability diagram
tion takes the form for the collisional, the collisional electron/collisionless ion
2 o and the collisionless modes. Whdi»5/3 a vigorous MHD
~2¢ At AetkipiAy(1)=0, (44) mode becomes unstable. F@r 2/3 an electrorgwJ drift mode is
whereA ;; does depend on the arc length along the field lineresponsible for a reduction of the stability linite., reduced
(). Defining tEsz_piz< 1, we can expandp=d¢gttep,;  d), whereas forp>2/3 the stability boundary matches the
+--- andw=wo+tw;+---. Then MHD boundary, i.e.d~5/3.

1
(43) d = §

1+79

1=y (48)
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IIl. CONCLUSIONS s qid

Two modes are seen to be present; a drift frequencyi T
mode WIthQNO(l) and a MHD mode Witm~(klpi)’1 3 d d30[1+ (elT,—3/2] —
>1. These modes are driven unstable by a combination of ~ + = (St i pF
curvature and profile effects, characterized by the parameters 21+ n) (elTi)[1+ 8(ABuin—0.4)]
d and . We have analyzed the stability boundaries for these (A2)
modes in thed— » parameter space for varying values of oy 5<1 we obtain
plasma collisionality. We find a somewhat smaller stable re-

O/Ti .

gion in this parameter space when collisionality is reduced. 9N MJF 3d 1-» Bd\ o

In the collisional regime the drift mode has been calledthe n;, T, 2 1+7 J1-AB oIy

entropy modé.In the collisionless regime the mode may be

identified as an unfavorable curvature driven mdtte d X (1= 8(NBpyin—0.4)), (A3)
>0)® or a temperature gradient driven mogder d<<0 and  with a similar expression with; — g, for electrons. Consider
7> Neit) - quasi-neutrality with ¢= g+ 8¢p,(1)+--- and d=d,

In the LDX experiment we expect the parameters to be+ 5d,+ - - - with ¢, the flute solution. To lowest order the
such that electrons are collisional but ions are collisionlesRg w]=Im[w]=0 mode defines a linay=dy(7) [Eq.
(Ne~5X10"—10" cm ™3, T~T;~100-200 e\). We find  (48)] as before. The first order equation becomes
that as the ions become collisionless the stability boundary is
somewhat degraded from the boundary determined by the 1+n 3_d° B 4a(1) + 8d1h BdA
entropy mode, without the destabilizing corrections that de- -~ 1—7 2 V1-\B 2 V1—\B
rive from collisional relaxation. In the collisionless case,

which is relevant to the fusion reactor regime, we observe a  3do¢o [ BAN(ABpyin—0.4) 0 (Ad)
further degradation of the stability boundary observed for 2 J1—\B '
n<2/3.

In a dipole configuration, as described in Refs. F7, Multiplying by ¢, and taking the flux tube average to anni-

<0,Vn,<0, and therefore;>0 in the region between the Nilate ¢, we obtain

pressure peak and the wall. In this region we expect the d; [2 By $dl/B?

pressure gradient to adjust so as to be just below the MHD d_o: 3 ¢dl/IB (AS)
limit, which for »>2/3 indicatesd=<5/3 and from Fig. 3 we . .
expect to be in a drift stable regime. At the pressure mkak Lhoeoguﬁﬁzge integrals can be evaluated to gug/do
=0 and»= —1, which is a marginally stable point. On the e

contrary, in the region between the pressure peak and the d=1 11+9n (A6)

internal coild<<0, and» can be positive or negative depend-
ing on the sign ofVn, (sinceVT>0) in this region. In this = .
region close to the ring, weak, temperature gradient instabiIiWe conclude that the variation afy with pitch angle drives

ties are possible, but Figs. 2 and 3 show that stable operatic}ﬁanokomfrf]g tstruc:rl:refl(l)(,j n thr?j eigen fUI’]CtIIZOﬂ ?hUt has l?
is possible for— 1< 5<%, with 7 of the order 1-3. Wweak effect on the boundary ird() space. For the wea

variation inwy(\) in the point dipole,8~0.17, the stability
boundary is modified approximately 1%.
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