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Electrostatic drift modes in a closed field line configuration
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The stability of electrostatic drift waves in a closed field line configuration in collisionality regimes
ranging from collisional to collisionless is compared. The maximum sustainable pressure gradient is
found to be dependent on the ratio of the temperature and density gradients (h[d ln T/d ln n). The
eigenmodes are seen to be flute-like. The stability boundary was found to be similar when both ions
and electrons are collisional, when they are collisionless, and for collisional electrons and
collisionless ions. The largest stable pressure gradients are obtained forh>2/3. As the collisionality
is reduced one observes some reduction of the region of stability. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1431594#
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I. INTRODUCTION

Closed field line systems, such as a levitated dipole, p
vide a promising new approach for the magnetic confinem
of plasmas for controlled fusion.1,2 The plasma in a closed
field line system can be stabilized in so-called ‘‘bad curv
ture’’ regions by plasma compressibility. In magnetohyd
dynamic~MHD! theory stability of interchange modes limi
the pressure gradient to a valued[d ln p/d ln U,g with U
5rdl/B and g the ratio of specific heats (g55/3 in three-
dimensional systems!.

Recent studies which imposed a long mean free p
collisional ordering~defined byvb j@n j@v, v* j , vd j with
v the wave frequency,vb j the bounce frequency,n j the
collision frequency,v* j the diamagnetic drift frequency,vd j

the curvature drift frequency! as compared with the sho
mean free path collisional MHD ordering (n j@vb j@v,
v* j , vd j) to both electrons and ions3–5 have shown that
near marginal stability for MHD modes (d;5/3) the MHD
mode will couple to a potentially unstable drift frequen
mode known as the ‘‘entropy mode.’’ The entropy mode
flute-like and stability depends ond and on the ratioh
5d ln T/d ln n, with the most stable value beingh52/3. Fur-
thermore it has been shown that ion collisional relaxat
~described as gyro-relaxation in Refs. 6,7! can destabilize the
entropy mode and produce a weak instability in some oth
wise stable regions ofd2h space.5

In a short mean free path collisional plasma~as charac-
terized by MHD! the plasma compressibility derives fro
the local relationship of pressure to changing flux tube v
ume. The plasma is constrained to move with the field lin
but in the case of closed field lines the field does not fo
flux surfaces and each closed field line must satisfy the eq
tion of state. This imposes a periodicity on the perturbat
that results in an important stabilizing term, the plasma co
pressibility. For open field lines the plasma is free to flo
along field lines. This eliminates plasma compressibility.
3951070-664X/2002/9(2)/395/6/$19.00
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For a collisionless plasma and considering low fr
quency perturbations that conserve the adiabatic invarianm
andJ, particles that are magnetically trapped~all the particles
for closed field lines! change energy as the field lines com
press. This effect has been shown to correspond exactl
the MHD plasma compressibility. For passing particles, ho
ever, the passing particles sample the entire flux surface
the path integral of perturbed potential will average to zer8

The description of drift ballooning modes in tokamak
has been studied extensively.9–11 The study of Ref. 11 indi-
cates the importance of the parameterh in expanding the
region of instability in a tokamak. However, the results
this reference apply to a tokamak equilibrium and in partic
lar they do not apply to the case of zero safety factor a
shear~i.e., q5s50).

In the collisionless regime,v,v* j ,vd j@n j , drift modes
were shown to be stable when the MHD stability condition
met andh;2/312 and stability was seen to improve ask'r i

increases, withk' the wave number perpendicular to th
magnetic field direction andr i the ion gyro radius. Forh
.2/3 a drift frequency mode was observed and it beca
more unstable whenk'r i increased.

Electromagnetic effects on these modes have been s
ied. Wonget al. have shown that finite beta effects are s
bilizing at low beta.13 They also consider the electromagne
effects at very high beta, and they have shown that there
be new regions of instability whenb@1.13

A levitated dipole experiment known as LDX is pre
ently under construction.2 The most relevant parameter re
gime for LDX would have collisional but long mean fre
path electrons (vbe.ne.v,vde) and collisionless ions. We
will, therefore, consider the stability of low beta electrosta
modes with this intermediate collisional ordering and co
pare our results with those obtained with collisional and c
lisionless orderings.
© 2002 American Institute of Physics
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II. SOLUTION OF DRIFT KINETIC EQUATION

We will compare the MHD prediction with the predic
tions of the more general plasma drift kinetic equation in
electrostatic limit. To compare the MHD result with kinet
theory we define

v̂* p[
bÃk•“p

V imini
~1!

and

v̂d
MHD[

2c

e

RkuT

11g^b&/2

rdlk/RB2

rdl/B
, ~2!

with R the cylindrical radial coordinate,k the field line cur-
vature,ku the azimuthal part of the perpendicular wave nu
ber (k'

2 5ku
21kR

2), and kuR5m@1. One can show thatd
defined above is equal tod5v̂* p /v̂d

MHD and therefore the
MHD stability requirement,d<g, can be written as

v̂* p<gv̂d
MHD . ~3!

We will consider the solution of the drift kinetic equatio
in the high collision frequency limit for electrons and lo
collision frequency for ions. We therefore apply the orderi
for electrons:14

Vce.vbe.ne.v* e;vde;v, ~4!

and for ions,

Vci.vbi.v* i;vdi;v.n i , ~5!

with Vc j the appropriate cyclotron frequency.
To derive the stability criterion for electrostatic mod

we consider a fluctuating potential (f) and ignore any equi-
librium electrostatic potential. From Faraday’s law it is po
sible for a perturbation to leave the magnetic field und
turbed if E52“f ~which is consistent withb!1).

The gyro kinetic equation was derived under the
sumption that the wave frequencyv is less than the cyclo
tron frequencyVc and the perpendicular wavelengthl
52p/k' is short compared to a parallel wavelength, 2p/ki .
The appropriate equation for the gyro averaged distribu
function f̃ is then8,15,16

f̃ 5qfF0e1J0~Z!h, ~6!

and the nonadiabatic responseh satisfies

~v2vd1 iv ib•“8!h52~v2v* !qfF0eJ0~Z!1 iC~h!.
~7!

In Eq. ~7! C(h) is the collision operator,J0(Z) is the Bessel
function of the first kind,F0(e,c) is the equilibrium distri-
bution function, i.e.,

F05S m

2pTD 3/2

n0e2e/T, ~8!

and

Z5
k'v'

Vc
, F0e[

]F0

]e
, v* 5

bÃk•¹8F0

mVcF0e
,
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vd5k•bÃ
~v i

2b•“b1m“B!

Vc

5k•bÃ
e(2~12lB!b•“b1l“B…

Vc
, ~9!

B5“cÃ“u, b5B/uBu.

We have definede5mv2/2, m5mv'
2 /2B, andl5e/m. The

prime on spatial gradients indicates thate and m are held
fixed in the differentiation. The magnetic flux function isc
andu is the azimuthal angle. Assumingk'

2 r i
2!1,

J0~Z!'12
~k'r i !

2

2

lB0
2

B

e

Ti
, ~10!

with the gyro radiusr i , defined asr i
25Ti /miV0i

2 , B0 the
magnetic field at the field minimum at the locationR5R0

andV0 the associated cyclotron frequency.
We consider perturbations whose growth time is lo

compared to a particle bounce time for all species and
pand Eq.~7! in powers of d5v/vb with vb the bounce
frequency, i.e., h5h01dh11d2h21••• . Notice d
;v* /vb;kur i and corrections to the perturbed density w
enter asd2}ku

2r i
2 . To zeroth order ind we obtain from Eq.

~7!:

v ib•¹8h0'0, ~11!

i.e., h05h0(e,m,c) a constant along a field line. We dete
mine the constanth0 by taking the bounce average of th
first order form of Eq.~7! to annihilateh1 to obtain

~v2v̄d!h052~v2v* !qfJ0F0e1 iC̄~h0!. ~12!

Since we will not pursue thev/vb expansion to higher or-
ders, we will suppress the subscript 0 in the following ana
sis of Eq.~12!. The overbar indicates a bounce time avera

f̄5
Am/2e

tb
R f~ l !dl

A12lB
, ~13!

with the bounce time tb defined as tb

5Am/2erdl/A12lB.
The electron collision operator conserves particles a

energy. With the chosen ordering and these conserva
properties the exact form of the electron collision opera
does not enter the results.

Consider first collisional electrons following Ref. 3. W
analyze Eq.~12! in the high collisionality limit (ne /v@1)
and expandhe in a subsidiary ordering,he5h01h11••• .
To lowest order we find thath0 is proportional to a Maxwell-
ian distribution function,F0 , multiplied by a perturbed den
sity, dN, and having a perturbed temperatureT1dT.14 Ex-
panding to first order we obtain

h0e5dNS m

2p~T1dT! D
3/2

e2e/(T1dT)

'FdN

n0
1

dT

T S e

T
2

3

2D GF0 . ~14!

To next order the drift kinetic equation becomes
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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397Phys. Plasmas, Vol. 9, No. 2, February 2002 Electrostatic drift models in a closed field line configuration
~v2v̄d!h052~v2v* !qfJ0F0e1 iC̄~h1!. ~15!

We can obtain the perturbed density and temperature for
electron species by annihilatingC̄(h1) with the two opera-
tors:

R dl

B E d3vS 1

mv2/2D
5pS 2

mD 3/2 R dlE
0

`

deS e1/2

e3/2D E
0

1/B dl

A12lB
. ~16!

Since the collision operator conserves particles and en
these operators will annihilate it, i.e.,

R dl/BE d3vC̄~h!5 R dl/BE d3vS e

T
2

3

2D C̄~h!50.

~17!

We will define v̂* by

v̂* j5
TkÃb•“n0

njmV
, ~18!

and write

v* 5v̂* „11h~e/T23/2!…F0 , ~19!

with h5d ln T/d ln n. Notice thatv̂* p5v̂* (11h). Taking
the flux tube and velocity space integral of Eq.~15! we ob-
tain the following expression for the nonadiabatic perturb
densitydNe for electrons from Eq.~14!:

dNe5
v̂den0~dTe /Te!1qe~v2v̂* e!^f&/Te

v2v̂de

, ~20!

with the flux tube average defined as

^f&5
*fdl/B

R dl/B

, ~21!

and v̂d j , the flux tube averaged drift, defined as

v̂d j5
cTj~Rku!

qjU
R dl

B2R
~k1“'B/B!, ~22!

with U5rdl/B. For low b, k'“'B/B and v̂d becomes
equal to the MHD definition given in Eq.~2!.

To obtain (dTe /Te) we take the flux tube average an
integrate over velocity space for (e/T23/2)3 Eq. ~15!
which again annihilates the collision operator to obtain

dTe

Te
5

2
3~dne /ne!v̂de2qehev̂* e^f&/T

v2 7
3v̂de

. ~23!

Equations~20! and~23! determinedNe /n and using Eq.~6!
we construct the total electron density perturbationdne /n
5dNe /n2qef/Te ,
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dne

n
52

qef

Te

1
qe^f&

Te
Fv22v~ 7

3v̂de1v̂* e!1v̂dev̂* e~
7
32he!

v22 10
3 v v̂de1

5
3v̂de

2 G
[

qe

Te
„2f1^f&Le

c~v,v̂* e ,v̂de!…. ~24!

If we assume both collisional electrons and ions so t
the zero gyroradius ion response becomes similar to Eq.~24!

~with v̂de ,v̂* e→v̂di ,v̂* i! we can apply quasi-neutrality to
obtain the marginal stability condition when

d5
5

7 F 11h

12 3
7h

G . ~25!

A. Collisional electrons, collisionless ions

In Refs. 3–5 the ion response was assumed to be c
sional. Here we assume a collisionless ion response and
nore terms of orderk'

2 r i
2 to obtain

dni

ni
52

qif

Ti
1

qi

Ti
E d3v

v2v̂* i„11h i~e/Ti23/2!…

v2v̄di~e,l!
f̄F0

[
qi

Ti
„2f1L i~v,v̂* i ,v̂di!…. ~26!

The pitch angle dependence of the normalized bounce a
age drift v̄di(e,l)Ti /(ev̂di) is shown in Fig. 1 for the mo-
tion of a particle in the field of a point dipole. The pitc
angle parameterl varies in the range (0,l,1/B0) with B0

the minimum magnetic field on the outer midplane. We o
serve thatv̄diTi /ev̂di is relatively constant as a function o
pitch angle in a dipole field~it varies from 0.6 to 0.75! and to
obtain the correct MHD response to order (vdi /v) when
v@v* ,vd we will choose

v̄di~e,l!'
2

3

e

Ti
v̂di . ~27!

FIG. 1. Bounce averaged curvature drift frequencyv̄di normalized to

ev̂di /T @Eq. ~22!# in a dipole field versusB0l(5B0 /Bbounce).
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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This approximation is discussed further in the Appendix.
obtain a dispersion relation we apply quasi-neutrality. Tak
Ti5Te and applying quasi-neutrality to Eqs.~24! and ~26!
yields

2f5L i1^f&Le
c . ~28!

Taking the flux tube average of Eq.~28! yields a dispersion
relation that does not depend on the spatial dependenc
the eigenfunctionf( l ),

25Fi~v!1Le
c , ~29!

where

Fi~v!5E d3vF0

v2v̂* i„11h i~e/Ti23/2!…

v2
2

3

e

T
v̂di

. ~30!

It has been shown for the collisional ordering that t
solution is flute5 and we will show below that, in the colli
sionless case the solution is also flute to orderk'

2 r i
2 . In the

present intermediate collisionality case, a comparison of E
~28! and ~29! shows that a flute eigenmode is also prese
Equation~29! can be written in the form

V3S 3 d h

2
212h D I 1~V!1V2S 11h2

3 d h

2

1S 10

3
2d1

10h

3
2

7 d h

2 D I 1~V! D
1VS 2

13

3
~11h!1d15 d h

1S 2
5

3
~11h!1

10d

3
2

5 d h

2 D I 1~V! D
1

10

3
~11h!2

7 d

3
2

3 d h

2

1S 25 d

3
1

5 d h

2 D I 1~V!50, ~31!

with V5v/v̂de , d5(11h)v* e /v̂de , and

I 1~y!5
4

Ap
E

0

`x2e2x2
dx

y12x2/3
, ~32!

which can be expressed in terms of error functions. Equa
~31! takes the form

D~V!5
d

11h
@F1~V!1hF2~V!#2F3~V!50. ~33!

It can be shown analytically that there is no marginally sta
mode withV,0. For modes withV.0 there are no drift-
resonant ions and, at marginal stability, there must be c
cident real roots forV so that]D/]V50, i.e.,

d

11h
@F18~V!1hF28~V!#5F38~V!. ~34!

Substituting Eq.~34! into Eq. ~33! yields
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~F18F32F38F1!1h~F28F32F38F2!50. ~35!

One can show that (F28F32F38F2)52(3/2)(F18F32F38F1)
and substituting into~35! yields the result

S 12
3

2
h D ~F18F32F38F1!50. ~36!

At marginal stability Eq.~36! yields a real frequency, inde
pendent ofh,

Vc50.3218. ~37!

SubstitutingV5Vc into Eq. ~33! yields the equation for the
stability boundary:

d50.65868
11h

120.51214h
. ~38!

For 21,h,2/3 the stability boundary, Eq.~38!, is close to,
and below, the collisional boundary given by Eq.~25!. At
marginal stability the mode has a real frequency given by
~37! and it propagates in the electron diamagnetic directi

We have solved Eq.~29! numerically using a zero-
finding routine to obtain the eigen frequency and we ha
utilized a Nyquist analysis to establish that we have found
possible unstable modes.

Figure 2 shows the stability diagram ind2h space in
the semi-collisional regime given by Eq.~38!. The thick line
at d55/3 is the MHD stability boundary. This appears wh
k'r iÞ0 and the regiond.5/3 is unstable. Notice that at th
point where the pressure gradient vanishes,h521 and d
50, and this is a marginally stable point. The topology of t
stability region is similar to that shown in Ref. 5 for th
entropy mode.

We can add finite Larmor radius~FLR! terms in the limit
k'r i.kur i ~this limit does not require higher order terms
the bounce expansion!. For sufficiently small FLR correc-
tions a MHD-like mode appears whend.5/3. For the colli-
sional case it was found that increasing FLR terms will ra
the stability boundary in the vicinity ofh52/3 and reduce it
elsewhere.3 In the semi-collisional case discussed here
find that FLR corrections lead to a degradation of the sta

FIG. 2. The stability of semicollisional~collisional electron-collisionless
ion! mode in~d,h!. The stable region is shaded.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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ity boundary whenh.2/3. For example, forh52, (k'r i)
2

50.001 the stability boundary degrades by 5%~from d
55/3). Forh,2/3 no significant degradation of the stabili
boundary is observed.

B. Collisionless mode

Rosenbluth8 considered a collisionless isotherm
plasma~i.e., h50! in a closed field line system. He showe
that whenTe5Ti an instability is always present, with zer
real frequency at marginality, whend exceeds a critical value
provided that some particles bounce in bad curvature.
now extend this result to arbitrary values ofh, and obtain an
analytic expression for the stability boundary in a point
pole @to be compared with Eqs.~25! and ~38!#.

To obtain a dispersion relationship for collisionless ele
trostatic modes we assume a collisionless electron resp
and apply quasi-neutrality. Fork'

2 r i
2!1 we obtain the dis-

persion relation

2f5E d3v
v2v* eS 11heS e

Te
2

3

2D D
v2

2

3

e

T
v̂de

f̄F0e

1E d3v
v1v* eS 11h i S e

Ti
2

3

2D D
v1

2

3

e

T
v̂de

f̄F0i . ~39!

Thus

2f5
1

2
~Le

e1L i0
e !E Bdl

A12lB
f̄, ~40!

where we have separated the energy and the pitch angl
tegrations. Taking the flux tube average~settingTe5Ti , ne

5ni) yields the dispersion relation

25Le
e1L i0

e , ~41!

which may be substituted into Eq.~40! to obtain

f2
1

2E Bdl

A12lB
f̄50. ~42!

Multiplying Eq. ~42! by f and taking the flux tube averag
yields

R dl

B E Bdl

A12lB
~f22f̄2!5E tbdl~f22f̄2!50.

~43!

Since f22f̄2>0 we can conclude that the mode is flut
like, i.e., f5f0 to orderk'

2 r i
2 .

Introducing finitek'
2 r i

2!1 the general dispersion rela
tion takes the form

22f1L i1Le1k'
2 r i

2L1i~ l !50, ~44!

whereL1i does depend on the arc length along the field l
( l ). Defining t[k'

2 r i
2!1, we can expandf5f01tf1

1••• andv5v01tv11••• . Then
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22f01L i~f0!1Le~f0!50, ~45!

which we have shown requires the flute solutionf0[^f0&.
In first order,

22f11L i~f1!1Le~f1!1L1i~ l ,f0!1
]L i~f0!

]v
v1

1
]Le~f0!

]v
v1f22f̄250. ~46!

Integratingrdl/B annihilates thef1 terms and determine
v1 from

v1

]

]v
@L i~v0!1Le~v0!#1 R dl

B
L1i~ l ,v[v0!50.

~47!

This gives the shift inv away from v0 , caused byk'
2 r i

2

Þ0. A similar perturbation analysis in the collisional an
semi-collisional cases show that the low frequency elec
static mode is flute-like,f05^f0&, in leading order of a
k'

2 r i
2!1 expansion, in all collisionality regimes.
Returning to the leading order dispersion relation, E

~41! and following Ref. 8, we seek a solution with Re@v#
5Im@v#50. Inserting this into Eq.~41! the velocity space
integrals can be evaluated analytically to determine the
bility boundary in the form

d5
1

3 F11h

12hG . ~48!

For h50, this recovers the stability result of Ref. 8; i.e
instability for d.1/3. Figure 3 displays the stability diagram
for the collisional, the collisional electron/collisionless io
and the collisionless modes. Whend.5/3 a vigorous MHD
mode becomes unstable. Forh,2/3 an electron drift mode is
responsible for a reduction of the stability limit~i.e., reduced
d), whereas forh.2/3 the stability boundary matches th
MHD boundary, i.e.,d'5/3.

FIG. 3. The stability of the collisional entropy mode~dashed!, the semicol-
lisional mode~solid!, and the collisionless mode~dotted! with k'

2 r i
250. The

MHD boundary is also shown.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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III. CONCLUSIONS

Two modes are seen to be present; a drift freque
mode withV;O(1) and a MHD mode withV;(k'r i)

21

@1. These modes are driven unstable by a combination
curvature and profile effects, characterized by the parame
d andh. We have analyzed the stability boundaries for the
modes in thed2h parameter space for varying values
plasma collisionality. We find a somewhat smaller stable
gion in this parameter space when collisionality is reduc
In the collisional regime the drift mode has been called
entropy mode.5 In the collisionless regime the mode may
identified as an unfavorable curvature driven mode~for d
.0)8 or a temperature gradient driven mode~for d,0 and
h.hcrit).

In the LDX experiment we expect the parameters to
such that electrons are collisional but ions are collisionl
(ne;53101221013 cm23, Te;Ti;1002200 eV!. We find
that as the ions become collisionless the stability boundar
somewhat degraded from the boundary determined by
entropy mode, without the destabilizing corrections that
rive from collisional relaxation. In the collisionless cas
which is relevant to the fusion reactor regime, we observ
further degradation of the stability boundary observed
h,2/3.

In a dipole configuration, as described in Refs. 1,2,“T
,0,“ne,0, and thereforeh.0 in the region between th
pressure peak and the wall. In this region we expect
pressure gradient to adjust so as to be just below the M
limit, which for h.2/3 indicatesd&5/3 and from Fig. 3 we
expect to be in a drift stable regime. At the pressure pead
50 andh521, which is a marginally stable point. On th
contrary, in the region between the pressure peak and
internal coild,0, andh can be positive or negative depen
ing on the sign of“ne ~since“T.0) in this region. In this
region close to the ring, weak, temperature gradient insta
ties are possible, but Figs. 2 and 3 show that stable opera
is possible for21,h,hcrit , with hcrit of the order 1→3.
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APPENDIX: PITCH ANGLE VARIATION OF v̄d

Consider the collisionless case. From Fig. 1 we obse
that a more accurate representation of the curvature
term would be

v̄di~e,l!'
2

3

e

Ti
v̂di„11d~lBmin20.4!…, ~A1!

andd;0.17. Therefore, in thev[0 limit
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11hE d3v@11h i~e/Ti23/2!#

~e/Ti !@11d~lBmin20.4!#
qifF0/Ti .

~A2!

For d!1 we obtain

dni

ni
'2

qif

Ti
1

3d

2

12h

11hE Bdl

A12lB
qif/Ti

3„12d~lBmin20.4!…, ~A3!

with a similar expression withqi→qe for electrons. Consider
quasi-neutrality with f5f01df1( l )1••• and d5d0

1dd11••• with f0 the flute solution. To lowest order th
Re@v#5Im@v#50 mode defines a lined05d0(h) @Eq.
~48!# as before. The first order equation becomes

2f1

11h

12h
1

3d0

2 E Bdlf1~ l !

A12lB
1

3d1f0

2 E Bdl

A12lB

2
3d0f0

2 E Bdl~lBmin20.4!

A12lB
50. ~A4!

Multiplying by f0 and taking the flux tube average to ann
hilate f̄1 we obtain

d1

d0
5S 2

3

Bminrdl/B2

rdl/B
20.4D . ~A5!

The flux tube integrals can be evaluated to gived1 /d0

'0.06. Thus

d5 1.01
1

3

11h

12h
. ~A6!

We conclude that the variation ofv̄d with pitch angle drives
ballooning structure,f1( l ), in the eigen function but has
weak effect on the boundary in (d,h) space. For the weak
variation inv̄d(l) in the point dipole,d'0.17, the stability
boundary is modified approximately 1%.
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