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Interchange modes in a collisional plasma
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Gross plasma stability can derive from plasma compressibility in the bad curvature regions of closed
field line systems. In this situation magnetohydrodynamic~MHD! theory predicts that the maximum
pressure gradient that is stable is proportional tog, the ratio of specific heats. This article will
examine the accuracy of the MHD prediction for electrostatic interchange modes using kinetic
theory. The maximum sustainable pressure gradient is found to be dependent on the ratio of the
temperature and density gradients (h[(n/T)(¹T/¹n)) as well as on the ion gyro-radius scale
length. Forh52/3 the MHD stability condition is reproduced. Whenh deviates from 2/3 the mode
changes character and the stability criterion becomes more stringent. ©2000 American Institute of
Physics.@S1070-664X~00!04309-3#
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Closed field line systems, such as a levitated dipole, p
vide a promising new approach for the magnetic confinem
of plasmas for controlled fusion.1,2 The plasma in a closed
field line system can be stabilized in so-called ‘‘bad curv
ture’’ regions by plasma compressibility.

In magnetohydrodynamic~MHD! theory stability by
compressibility limits the pressure gradient to a value tha
proportional to the ratio of specific heats,g (g55/3 in three-
dimensional systems!. This comes about as a result of a
assumed simple form for the plasma equation of state
addition, MHD theory only concerns the pressure gradi
and does not indicate the destabilizing effects that can de
from the independent variation of the density and tempe
ture gradient profiles.

To refine the predicted stability limit we use a kinet
theory approach and consider the marginal stability for l
beta ~electrostatic! flute/interchange modes. We will deriv
the stability boundary for electrostatic interchange mode
a collisional plasma that includes the effect of the relat
temperature and density gradient and also includes finite
mor radius~FLR! corrections. This treatment uses the app
priate collisionality regime for the LDX experiment2 and
provides a valuable comparison between the stability pr
erties predicted by ideal MHD and the richer~and more ac-
curate! prediction of kinetic theory.

In MHD theory the stability of interchange modes
arbitrary beta requires3,4

1

p
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2g^kc&
11g^b&/2
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with the flux tube average defined as

^a&[
ra dl/B

rdl/B
. ~2!

The curvaturek5kc¹c and g55/3. We will compare the
MHD prediction with the predictions of the more gener
plasma drift kinetic equation. We will utilize the electrostat
limit of the drift kinetic equation. To compare the MHD
result with kinetic theory we define

v̂* p[
k'¹p

V imini
~3!

and

v̂d
mhd[

2

e
~k'R!Ti

rdlk/RB2

~11g^b&/2!rdl/B
~4!

with R the cylindrical radial coordinate andk'R5m@1. The
MHD stability requirement@Eq. ~1!# can therefore be written
as

v̂* p<gv̂d
mhd. ~5!

Following the treatment of Lane5 we will consider the
solution of the drift kinetic equation in the high collisio
frequency limit~for both ion and electron species!. We there-
fore apply the ordering for both ions and electrons:

Vc.vb.n.v* ;vd;v, ~6!
7 © 2000 American Institute of Physics
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with Vc the cyclotron frequency,vb the bounce frequency,n
the collision frequency,v* the diamagnetic drift frequenc
andvd the magnetic curvature drift frequency.

To derive the stability criterion for electrostatic mod
we consider a fluctuating potential (f) and ignore any equi-
librium electrostatic potential. From Faraday’s law it is po
sible for a perturbation to leave the magnetic field und
turbed if E52¹f ~which is consistent withb!1).

The drift kinetic equation was derived under the assum
tion that the wave frequencyv is less than the cyclotron
frequencyVc and that the ion Larmor radiusr i is shorter
than the perpendicular wavelengthl52p/k' which is, in
turn, short compared to a parallel wavelength, 2p/ki . The
appropriate equation for the distribution functionf̃ is then6–8

f̃ 5qfF0e1J0~k'r!h, ~7!

and the nonadiabatic responseh satisfies

~v2vd1 iv ib•¹8!h52~v2v* !qfF0eJ0~k'r!

1 iC~h!. ~8!

In Eq. ~8! C(h) is the collision operator,J0(k'r) is the
Bessel function of the first kind,F0(e,c) is the equilibrium
distribution function, i.e.,

F05S m

2pTD 3/2

n0e2e/T ~9!

and

F0e[
]F0

]e
,

v* 5
b3k'•¹8F0

mVcF0e
,

vd5k'•b3
~v i

2b•¹b1m¹B!

Vc

5k'•b3
e~2~12lB!b•¹b1l¹B!

Vc
, ~10!

B5¹c3¹u, b5B/uB.

We have definede5v2/2, m5v'
2 /2B andl5e/m. The gra-

dient ¹8 is taken at constante and m. The magnetic flux
function is c and u is the azimuthal angle. Assumingk'r
!1 yields

J0 j'12
~k'r j !

2

2

lB0
2

B

e

T
~11!

with the gyro-radiusr j , defined asr j
25T/mV0

2 , B0 the
magnetic field at the field minimum andV0 the associated
cyclotron frequency at the locationR5R0.

We consider perturbations whose growth time is lo
compared to a particle bounce time in Eq.~8! and obtain

v ib•¹h'0, ~12!

i.e., h5h0(e,m,c) a constant along a field line. We wi
determine the constanth0 by taking the bounce average o
Eq. ~3!,
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~v2v̄d!h052~v2v* !qfJ0̄F0e1 iC̄~h0!. ~13!

The overbar indicates a bounce time average:

f̄5
1

tb
R f~ l !dl

A12lB
, ~14!

with the bounce time,tb , defined as

tb5 R dl

A12lB
. ~15!

We will assume that the collision operator conserves p
ticles and energy. With the chosen ordering and these
sumed conservation properties the exact form of the collis
operator does not enter the results.

We will analyze Eq.~13! in the high collisionality limit
(n/v@1) and writeh5h01h11•••. To lowest order we
find that h0 is proportional to a Maxwellian distribution
function,F0, multiplied by a perturbed density,dn, and hav-
ing a perturbed temperatureT1dT.5 Expanding to first order
we obtain

h05dnS m

2p~T1dT! D
3/2

e2e/(T1dT)

'Fdn

n0
1

dT

T S e

T
2

3

2D GF0 . ~16!

To next order the drift kinetic equation becomes:

~v2v̄d!~h01h1!52~v2v* !qfJ0̄F0e1 iC̄~h1!. ~17!

We can obtain the perturbed density for electron~ion! spe-
cies by taking the velocity space average, defined by:

E g~v!d3v5pS 2

mD 2/3

BE
0

`

dee3/2E
0

1/B

dl
g

A12lB
. ~18!

The collision operator conserves particles and energy
therefore the flux tube and velocity average will annihilate
i.e.,

E dl/BE d3vC̄~h!5E dl/BE d3v~e/T23/2!C̄~h!50.

~19!

We will define v̂* by

v̂* j5
Tk'3b•¹n0

njmV
, ~20!

and write

v* 5v̂* ~11h~e/T23/2!!F0 , ~21!

with h5d ln T/d ln n. Notice thatv̂* p5v̂* (11h). Taking
the flux tube and velocity space average of Eq.~17! and
using Eq. ~2! we obtain the following expression for th
non-adiabatic perturbed densitydnj for speciesj:

dnj5$v̂d jn0~dT/T!1~qj /Tj !@~v2v̂* !~f̄2K j /2!

1v̂* jh jK j /2#%/~v2v̂d j!, ~22!

with v̂d defined as
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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v̂d5
cT~Rk'!

qV E dl

B2R
~k1¹B/B!. ~23!

In the lowb, k'¹B/B andv̂d becomes equal to the MHD
definition given in Eq.~4!.

The finite-Larmor-radius~FLR! parameter isK j ,

K j5~B0R0!2~k'0r j 0!2
*f dl/~B3R2!

*dl/B
, ~24!

with k'0r j 0 evaluated on the outer midplane.
To obtain (dTj /Tj ) we take the flux tube average an

integrate over velocity space for (e/T23/2)3Eq. ~17!
~which again annihilates the collision operator! to obtain

dTj /Tj5$ 2
3~dnj /nj !v̂d j2~qj /3T!@~v2v̂* j2

7
2v̂* jh j !K j

13f̄h j v̂* j #%/~v2 7
3v̂d j!. ~25!

Equation~22! together with Eq.~25! yields the no-adiabatic
perturbed density response of speciesj:

dnj

n
5

qj f̄

Tj
Fv22v~ 7

3v̂d j1v̂* j !1v̂d jv̂* j~
7
3 2h j !

v22 10
3 vv̂d j1

5
3v̂d j

2 G
1

qjK j

Tj
F21

2v
21v~ 5

6v̂d j1
1
2v̂* j~11hj!!2

5
6v̂d jv̂* j

v22 10
3 vv̂d j1

5
3v̂d j

2 G
[

qj

Tj
@f̄G1 j~v,v̂* j ,v̂d j!1K jG2 j~v,v̂* j ,v̂d j!# , ~26!

and the temperature perturbationdT/T:

dTj

Tj
5

qj f̄

Tj
Fv~ 2

3v̂d j2h j v̂* j !2v̂d jv̂* j~
2
32h!

v22 10
3 vv̂d j1

5
3v̂d j

2 G
1

qjK j

Tj
F2 1

3 v21v~ 1
3v̂* j1

7
6 h j v̂* j !2 5

6h j v̂d jv̂* j

v22 10
3 vv̂d j1

5
3v̂d j

2 G
[

qj

Tj
@f̄H1 j~v,v̂* j ,v̂d j!1K jH2 j~v,v̂* j ,v̂d j!#. ~27!

We apply quasi-neutrality to obtain a dispersion relations
and we multiply the quasi-neutrality equation byf* and
take a flux tube average to obtain

05(
j

qjE dl

B E d3vS qjf
2

T
F01f* J0~k'r j !h0 j D . ~28!

We assume that the modes are flutelike, i.e.,f25f̄2, and
that the electron finite Larmor radius corrections are ins
nificant, i.e.,Ke;0. This yields a dispersion relation of th
following form:

05221G1e1G1i1k i S G2i2
G1i

2
2

H1i

2 D . ~29!

The finite-Larmor-radius parameterk i becomes~for flute
modes!

k i5~B0R0!2~k'0r i0!2
*dl/~B3R2!

*dl/B
. ~30!
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Equation~29! is a quartic equation with four roots. Assum
ing v̂* i52v̂* e and v̂di52v̂de we obtain

a4v41a3v31a2v21a1v1a050, a459k i ,

a35215k iv̂de19~11h!k iv̂* e ,

a2525~617k i !v̂de
2

13~616h25k i210hk i !v̂dev̂* e , ~31!

a1525k iv̂de
3 25~723h!k iv̂de

2 v̂* e ,

a0550vde
4 15~21416h15k i !v̂de

3 v̂* e .

In the limit thatv@v̂* ;v̂d , Eq. ~29! yields the MHD dis-
persion relation, namely,

v252
v̂* v̂d~11h!

k i
1

10

3

v̂d
2

k i
, ~32!

with v̂* [2v̂* e . There can be a fast growing instabilit
when v̂d,0 and v̂* ,0. The first term in Eq.~32! is the
MHD growth rate and the second term is the stabilizing co
pressibility. Equation~32! assumesv@v̂* and therefore
cannot be used to predict marginal stability.

When k i50, a45a350, and we obtain a temperatur
gradient driven drift wave. The dispersion relation for th
mode becomes

v25v̂de
2 5vde2~723h!v* e

3vde2
9
5 ~11h!v* e

, ~33!

which is marginally stable whenvde /v* e5(723h)/5. Fur-
thermore, if we relax the flute requirement and permitf2

.f̄2 we find that a nonflutelike eigenfunction is more stab
than a flutelike (f25f̄2) mode. Fork iÞ0 the MHD and
drift branches are coupled.

We will first investigate the dependence of the inte
change mode on the plasma profile factor,h. In Fig. 1 we

FIG. 1. Normalized pressure gradientv̂* p /v̂d vs the profile factorh
5n¹T/T¹n for k i50.01 ~solid! andk i50.1 ~dashed curve!.
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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plot v* p /vd vs h for small k i50.01 and for finitek i50.1.
The areas below the curves are stable. Consider first the
bility boundary in the small Larmor radius limit, i.e
(k'r i)

250.01. MHD theory requiresv̂* p /v̂d,5/3 for sta-
bility and we observe the identical limit from kinetic theo
whenh52/3. Ash deviates from 2/3, however, the stabili
requirements become more stringent. In Fig. 2 we plot
real and imaginary solution for the unstable modes obtai
when v̂* p /v̂d55/3 for Ki50.01. Weobserve that when
h,2/3 the mode has a real frequency that is near to zero
a growth rateg/v̂* e;5 to 10. In the largeh limit, i.e., for
h.2/3, we obtain a pair of drift waves withv;g.v̂d

which are driven unstable by the temperature gradient. Th
two modes propagate in both the ion and the electron
magnetic directions.

Figure 3 displays the real frequency at thek50.01 mar-
ginal stability boundary of Fig. 1. Again we observe that t

FIG. 2. The imaginary~solid! and real~dashed curve! frequency (v/v* e)

for the unstable modes obtained whenv̂*p/v̂d55/3.

FIG. 3. The real frequency (v/v* e) at the marginal stability boundary fo
k i50.01.
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real mode frequency is near zero forh,2/3 and is deter-
mined by the drift frequency forh.2/3. The significance of
h52/3 is that for an adiabatic exchange of flux tubes
temperature and density profiles are left unchanged at
value of h. Thus there is no added instability drive due
temperature-gradient effects and this is the most stable o
ating point.

Figure 1 also shows the stabilizing effects of finite La
mor radius. We observe that for the FLR factork i50.1 the
stable region is increased for the MHD-like mode and
should expect the lowest toroidal mode number modem
51) to be the most unstable mode, as it is least effected
FLR. Whenh.2/3, FLR is not observed to be stabilizing

MHD flute modes will coalesce with electrostatic inte
change modes in the low beta limit because, for flute mod
neither the electrostatic potential norB' vary along a field
line and thereforeEi50 and the modes satisfy the MHD
assumption.9 However, we have shown that the character
interchange modes that are stabilized by compressibility
closed field line systems is quite different from what MH
theory would predict. The stability boundary agrees with t
MHD prediction whenh52/3, but becomes more restrictiv
when hÞ2/3. Near marginal stability the MHD mode i
coupled to a temperature-gradient-driven mode and the
and imaginary frequencies are of the order of the drift f
quency.

At high b, flute modes will haveB̃iÞ0 and MHD usu-
ally indicates that unstable modes have a ballooning cha
ter at high beta. It has been shown, however, that in a dip
field with the pressure profile chosen to be marginally sta
to interchange modes, the lowest order odd ballooning m
and all higher modes are stable when the interchange m
is marginally stable.10,11 Furthermore it has been shown th
in this situation the lowest order even mode is stable wh
the interchange mode is stable and vice versa3 and in fact at
marginal stability this mode is the interchange mode. T
stability of high beta interchange modes will be treated in
future publication.
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