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Gross plasma stability can derive from plasma compressibility in the bad curvature regions of closed
field line systems. In this situation magnetohydrodynafEiD) theory predicts that the maximum
pressure gradient that is stable is proportionalytathe ratio of specific heats. This article will
examine the accuracy of the MHD prediction for electrostatic interchange modes using kinetic
theory. The maximum sustainable pressure gradient is found to be dependent on the ratio of the
temperature and density gradients(n/T)(VT/Vn)) as well as on the ion gyro-radius scale
length. Forp=2/3 the MHD stability condition is reproduced. Wherdeviates from 2/3 the mode
changes character and the stability criterion becomes more stringer200@ American Institute of
Physics[S1070-664X00)04309-3

Closed field line systems, such as a levitated dipole, prowith the flux tube average defined as
vide a promising new approach for the magnetic confinement
of plasmas for controlled fusiol? The plasma in a closed _$adi/B 5
field line system can be stabilized in so-called “bad curva- = $dI/B ° @
ture” regions by plasma compressibility.

In magnetohydrodynami¢MHD) theory stability by The curvaturex=«,V¢ and y=5/3. We will compare the
compressibility limits the pressure gradient to a value that i¢MHD prediction with the predictions of the more general
proportional to the ratio of specific heats(y=>5/3 in three-  plasma drift kinetic equation. We will utilize the electrostatic
dimensional systemsThis comes about as a result of an limit of the drift kinetic equation. To compare the MHD
assumed simple form for the plasma equation of state. Ifiesult with kinetic theory we define
addition, MHD theory only concerns the pressure gradient
and does not indicate the destabilizing effects that can derive /)  _ K.Vp 3)
from the independent variation of the density and tempera- *PQimin;
ture gradient profiles.

To refine the predicted stability limit we use a kinetic
theory approach and consider the marginal stability for low >

X . X . R 2 $dl«x/RB
beta (electrostatit flute/interchange modes. We will derive wg‘hdz —(k,R)T; (4)
the stability boundary for electrostatic interchange modes in e (1+¥(B)2)¢$dI/B
a collisional plasma that inclgdes the effept of the .rglativewith Rthe cylindrical radial coordinate akd R=m>1. The
temperature and density gradient and also includes finite Larl\?lHD stability requiremenfEq. (1)] can therefore be written
mor radius(FLR) corrections. This treatment uses the appro- '
priate collisionality regime for the LDX experiménand
provides a valuable comparison between the stability prop-  ~  _ ~ppg
erties predicted by ideal MHD and the rich@nd more ac- @xp=Yd
curate prediction of kinetic theory.

In MHD theory the stability of interchange modes at
arbitrary beta requiré$

and

®)

Following the treatment of Lafeve will consider the
solution of the drift kinetic equation in the high collision
frequency limit(for both ion and electron specjedVe there-
fore apply the ordering for both ions and electrons:
Ldp_ 2y(x,) PoY ’

pdy =1+ (B)2" @

Q> wp>v> 0, ~ 0y~ o, (6)
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with Q. the cyclotron frequencyy,, the bounce frequency,

the collision frequencyw, the diamagnetic drift frequency

and oy the magnetic curvature drift frequency.

To derive the stability criterion for electrostatic modes

we consider a fluctuating potentiap] and ignore any equi-

librium electrostatic potential. From Faraday’s law it is pos-
sible for a perturbation to leave the magnetic field undis

turbed ifE=—V ¢ (which is consistent with3<<1).

The drift kinetic equation was derived under the assump-
tion that the wave frequency is less than the cyclotron

frequency(). and that the ion Larmor radius; is shorter
than the perpendicular wavelengih=2=/k, which is, in
turn, short compared to a parallel wavelengthr/R,. The

appropriate equation for the distribution functibiis therf 8

T=a¢Foct+Jo(k p)h, (7)
and the nonadiabatic resporissatisfies
(0= wgtivb-V)h=—(0—w0,)qé¢Fodo(Kk, p)
+iC(h). (8)

In Eq. (8) C(h) is the collision operatorJy(k, p) is the
Bessel function of the first kindsq(€,) is the equilibrium
distribution function, i.e.,

m e —€elT
Fo= 7T Nee 9
and
_&FO
0= e !
_kaL-V’FO
@x mQCFOE '
(vfb-Vb+uVB)
wy=k, -bX
d L Qc
€(2(1-AB)b-Vb+\VB)
=k, -bXx , (10
Qe
B=Vy¢xVe, b=B/|B.

We have define¢=v2/2, u=v?/2B and\ = e/ u. The gra-
dient V' is taken at constan¢ and . The magnetic flux
function is ¢ and @ is the azimuthal angle. Assumirg p
<1 yields

Kk, pi)2 \B3
( ij) o€ (11)

with the gyro-radiusp;, defined asp’=T/mQj, B, the
magnetic field at the field minimum ard, the associated
cyclotron frequency at the locatidR=R,,.

J. Kesner
(0= 0g)hy=—(0—w,)qdIoFo.+iC(ho). (13
The overbar indicates a bounce time average:
— 1 ¢(1)dl
$=— : (14
v J J1—A\B
‘with the bounce timer,, defined as
% dl 15
Th— —
> J J1-\B

We will assume that the collision operator conserves par-
ticles and energy. With the chosen ordering and these as-
sumed conservation properties the exact form of the collision
operator does not enter the results.

We will analyze Eq(13) in the high collisionality limit
(v/w>1) and writeh=hy+h;+---. To lowest order we
find that hy is proportional to a Maxwellian distribution
function, Fy, multiplied by a perturbed densitgn, and hav-
ing a perturbed temperatufet 5T.° Expanding to first order
we obtain

m 3/2
— —€l(T+5T)
o 5”(277(T+5T) €
on O6T[e 3
“In, T T T2 [Fer (16

To next order the drift kinetic equation becomes:

(w—wg)(hg+hy)=—(0—w,)q¢IoFe.+iC(hy). (17

We can obtain the perturbed density for electf@mmn) spe-
cies by taking the velocity space average, defined by:

f 3 (2 e[ an VB g9
v)dv=m| — Bf d f da .
gvdiv=m m 0 ce 0 V1—AB

The collision operator conserves particles and energy and

therefore the flux tube and velocity average will annihilate it,
ie.,

(18)

f dI/BJ' d%E(h):fdl/Bf d3v (e/T—3/2)C(h)=0.

(19
We will define @, by
. Tk, Xb-Vn,
o= ma @0
and write
w, =w, (1+ (el T—3/2))F,, (21)

with »=d In T/dInn. Notice thatw, ,= w, (1+ 7). Taking
the flux tube and velocity space average of Ebj7) and

We consider perturbations whose growth time is longusing Eqg.(2) we obtain the following expression for the

compared to a particle bounce time in E8) and obtain
UHb-VhWO, (12)

non-adiabatic perturbed densifin; for specieg:

8N ={wano(ST/IT) + () ITP[(0—w, ) ($—K;/2)

i.e., h=hg(e,u,y) a constant along a field line. We will
determine the constathy by taking the bounce average of
Eq.(3),

with w4 defined as
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A _cT(Rkl)f Ao
wd—q—v ﬁ(K—}_ ).

In the low 8, k~VB/B and[ud becomes equal to the MHD

definition given in Eq.(4).
The finite-Larmor-radiugFLR) parameter i,

[ ¢ dl/(B3R?)
fdi/B

with Kk, gpjo evaluated on the outer midplane.

Kj=(BoRo)*(k,opjo)?

(23

(29)

Interchange modes in a collisional plasma 3839

Equation(29) is a quartic equation with four roots. Assum-
iNg w,;=—, and wg;= — @ge We obtain

a0+ azeitaw’tawt+ag=0, a,=9«;,
ag=—15k;wget (1 + 7) ki @y o,
a,=—5(6+7x;) w3

+3(6+67—5k— 107K;) @ge@y o (31)

a,= 25k wge— 5(7—37) K5y e

To obtain (6T;/T;) we take the flux tube average and

integrate over velocity space fore/(T—3/2)XEq. (17)

a9="5004,+5(— 14+ 67+ 5k{) 0360y e -

(which again annihilates the collision operattr obtain

370, M (0= Soq).

Equation(22) together with Eq(25) yields the no-adiabatic Ki

perturbed density response of spegies

In the limit thatw> w, ~ @4, Eq.(29) yields the MHD dis-
persion relation, namely,
s~ 2

(25) wzz_w+l_()ﬁ, (32)
3 Kj
with w, =2w, .. There can be a fast growing instability
when wy<0 andw, <0. The first term in Eq(32) is the
MHD growth rate and the second term is the stabilizing com-
pressibility. Equation(32) assumesw>w, and therefore
cannot be used to predict marginal stability.

When «;=0, a,=a3=0, and we obtain a temperature

e 2 7" - - - 7
on;  qjé| @ —0(304j+ 0, )+ 0gjo, (53— 7))
n Tj w?— %wa)dj-l—%wéj
1 2 57 17 5~ -
. ;K| —20°+ 0(gwgjt 20, (1+ 7))~ gwgj 0 |
TJ wz— %)w(:)dj+§(:)gj
_9

=T_j[$Glj(w’a’*j 0aj) TK;Goj(0,0,,04))],

and the temperature perturbatiém/T:

Ty _ g4
LI

27 - - - 2
0(504j= 7j0, ) — 0gjo, (5~ 7)

2 10 7 5~ 2
w— ?wwdj-l-gwdj

K.
+q, i

1 2 17 7 - 5 - -
— 30 T 0(50, T § V0 |) 57 0dj@y |

gradient driven drift wave. The dispersion relation for this
mode becomes

(26) L~ Boge— (T-3n) 0y,

W= wy ,
e3wde_ §(1+ )0y e

(33

which is marginally stable wheaye/ v, ¢=(7—37)/5. Fur-
thermore, if we relax the flute requirement and pergit
> ¢? we find that a nonflutelike eigenfunction is more stable

than a flutelike ?=$2) mode. Forx;#0 the MHD and
drift branches are coupled.

) 0 572
TJ w?— ?wwdj-l-gwdj

g — R R " N
ET_J_[(/J’Hlj(wvw*j ygj) TKjHj (0,04, 04)) ].
i

We will first investigate the dependence of the inter-
change mode on the plasma profile factgr,In Fig. 1 we
(27)

Marginal Stability;
¥=0.1, 0.01

We apply quasi-neutrality to obtain a dispersion relationship

and we multiply the quasi-neut_rality equation lgy* and R UNSTABLE
take a flux tube average to obtain 1.8 P
H - 1i=0.1
dl qi p? L e —— S ____3 3 ——
0=2 q,-fgf dsv( T Fot¢*Jo(kipho|. (28 e AN
i : A S =001
o a 15 '/ N -~
We assume that the modes are flutelike, i@ = ¢, and i : g el
that the electron finite Larmor radius corrections are insig-3 1-4 7 R
nificant, i.e.,K¢~0. This yields a dispersion relation of the 13 . T
following form: - ,7 STABLE
Gli Hli 11 "/
0:_2+G1e+Gli+Ki GZi—T—T . (29) : 7/
1 ; ; .
The finite-Larmor-radius parameter; becomes(for flute 0.2 07 1.2 1.7
modes$ n
[dl/(B3R?) . P .
= (B-R)2(k 32 FIG. 1. Normalized pressure gradient, ,/wy vs the profile factory
«i=(BoRo)*(KLopi0) fdi/B (30) =nVT/TVn for x;=0.01(solid) and Ki=0.F;L (dashed curve
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FIG. 2. The imaginarysolid) and real(dashed curvefrequency (/w, )

for the unstable modes obtained when,/wy=5/3.
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real mode frequency is near zero fgr<2/3 and is deter-
mined by the drift frequency for,>2/3. The significance of
n=2/3 is that for an adiabatic exchange of flux tubes the
temperature and density profiles are left unchanged at this
value of . Thus there is no added instability drive due to
temperature-gradient effects and this is the most stable oper-
ating point.

Figure 1 also shows the stabilizing effects of finite Lar-
mor radius. We observe that for the FLR factge=0.1 the
stable region is increased for the MHD-like mode and we
should expect the lowest toroidal mode number mogte (
=1) to be the most unstable mode, as it is least effected by
FLR. When#%>2/3, FLR is not observed to be stabilizing.

MHD flute modes will coalesce with electrostatic inter-
change modes in the low beta limit because, for flute modes,
neither the electrostatic potential nBr, vary along a field
line and thereforeE|=0 and the modes satisfy the MHD
assumptiorf. However, we have shown that the character of
interchange modes that are stabilized by compressibility in
closed field line systems is quite different from what MHD

plot w, p/wqy vs » for small k;=0.01 and for finitex;=0.1.  theory would predict. The stability boundary agrees with the
The areas below the curves are stable. Consider first the St&fHD prediction whenn=2/3, but becomes more restrictive
bility boundary in the small Larmor radius limit, i.e., when n#2/3. Near marginal stability the MHD mode is
(k. p;)2=0.01. MHD theory requireé)*p/&d<5/3 for sta- coupled to a temperature-gradient-driven mode and the real
bility and we observe the identical limit from kinetic theory and imaginary frequencies are of the order of the drift fre-
when n=2/3. As n deviates from 2/3, however, the stability quency.

requirements become more stringent. In Fig. 2 we plot the At high B, flute modes will haveéuaﬁo and MHD usu-

real and imaginary solution for the unstable modes obtainegly indicates that unstable modes have a ballooning charac-
when E)*p/&)d=5/3 for K;=0.01. Weobserve that when ter at high beta. It has been shown, however, that in a dipole
7<2/3 the mode has a real frequency that is near to zero anfield with the pressure profile chosen to be marginally stable
a growth ratey/&)* «~5 to 10. In the largey limit, i.e., for  to interchange modes, the lowest order odd ballooning mode
7>2/3, we obtain a pair of drift waves witk~ y> g and all higher modes are stable when the interchange mode

. . 0,11 .
which are driven unstable by the temperature gradient. Thedg marginally stablé™** Furthermore it has been shown that

two modes propagate in both the ion and the electron dialh this situation the lowest order even mode is stable when
magnetic directions. the interchange mode is stable and vice veesal in fact at

Figure 3 displays the real frequency at the 0.01 mar- marginal stability this mode is the interchange mode. The
ginal stability boundary of Fig. 1. Again we observe that thesStability of high beta interchange modes will be treated in a

Real Frequency at Marginality

future publication.
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