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Abstract. A plasma confined in a dipole field exhibits unique equilibrium and stability prop-
erties. In particular, equilibria exist at all β values and these equilibria are found to be stable
to ballooning modes when they are interchange stable. When a kinetic treatment is performed
at low beta we also find a drift temperature gradient mode which couples to the MHD mode in
the vicinity of marginal interchange stability.

1 Introduction

A dipole plasma confinement device may be an attractive fusion power source [1, 2]. To
explore the equilibrium and stability of a fusion grade plasma confined in such device
the Levitated Dipole Experiment (LDX) [3] is currently being built at M.I.T. In LDX
the dipole magnetic field will be created by a floating axisymmetric superconducting
current ring. There is no toroidal magnetic field. In such a device the relatively rapid
radial variation of the magnetic field strength allows very high plasma pressure near the
levitated dipole coil while maintaining a much lower plasma pressure at the outer edge. A
critical issue for the dipole fusion concept is the nature of plasma equilibrium and stability
at very high core plasma pressure and local plasma beta. In this paper, we discuss models
of high beta equilibria that demonstrate that plasmas can be MHD stable in a dipole
magnetic field even when the local beta greatly exceeds unity.

Dipole MHD equilibrium and stability have been analyzed both analytically and nu-
merically [4, 5, 6]. Reference [4] investigated the numerically computed free boundary
equilibria for a plasma in the field of a floating ring and its stability. In Ref. [5] a useful
family of equilibrium solutions to the Grad-Shafranov equation has been found for a point
dipole by semi-analytic methods. Furthermore, the MHD stability problem of a dipole
equilibrium was reduced to a problem of solving a linear ordinary integro-differential equa-
tion Ref. [6]. Both the numerical floating ring equilibria and the point dipole equilibria
for isotropic plasma pressure have been found to remain stable to ballooning modes at all
beta values when they are interchange stable.

Electrostatic plasma modes for magnetic dipole equilibria (the limit of low plasma
pressure) have also been studied kinetically under the high collisionality assumption [7].
These modes are flute-like to leading order in the expansion in (k⊥ρi)

2 � 1, where ρi is the
ion Larmor radius and k⊥ is the perpendicular component of the wave vector. The elec-
trostatic mode dispersion relation has two branches - an “MHD-like” branch and a “drift”
branch. In the absence of collisional dissipation the stability condition of the “MHD-like”
electrostatic mode coincides with the MHD interchange stability condition, while stabil-
ity of the “drift” mode depends on two independent parameters: η ≡ d lnTi/d lnNi and
d ≡ −d ln p/d ln ν, where Ti and Ni are the ion temperature and density, p is the total



plasma pressure and ν =
∮
d
/B with B the magnitude of the magnetic field and 
 the

coordinate along the magnetic field line.

2 Ideal MHD Formulation

2.1 Equilibrium

In a laboratory plasma confined in a levitated dipole device the plasma is expected to be
isotropic. Since the currents in the floating ring are toroidal, the magnetic field is entirely
poloidal and currents within the plasma are toroidal as well. All magnetic field lines
are closed so that “flux” or pressure surfaces are determined by their surfaces of rotation
about the symmetry axis. The Grad-Shafranov equation for a dipole is particularly simple
in form:

∇ ·
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∇ψ
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= −µ0

dp

dψ
, (1)

with ψ the poloidal flux function, p = p(ψ) the plasma pressure, and R the cylindrical
radial coordinate. We define the local beta as β = 2µ0p/B

2.
We have solved the equilibrium equation numerically (for arbitrary beta) [4] to obtain

a free boundary solution to Eq. (1) in LDX geometry [8]. For a fixed edge pressure the
highest beta value is obtained for a pressure profile that is marginally stable to interchange
modes. A high-β equilibrium solution, shown in Fig. 1, is found by choosing a pressure
profile that is close to the interchange stability boundary (p ∝ ν−γ , γ = 5/3 [9]) and
has an edge pressure of 20Pa which yields βedge = 0.67. The corresponding peak beta is
βmax = 25 at R = 0.85m and the plasma has effectively excluded the field in this region.
Notice that the equilibrium has shifted outward radially and the plasma is now limited
on an outer limiter and not on the magnetic separatrix.

For a point dipole it is possible to obtain relatively simple separable solutions of the
Grad-Shafranov equation for both the isotropic [5] and anisotropic [10] pressure cases.

2.2 Stability

The ideal MHD interchange and ballooning stability of the magnetic dipole configuration
can be evaluated using the MHD energy principle. Considering interchange modes, for
which the relevant perpendicular plasma displacement is constant along a field line, we
obtain the general finite β interchange stability condition [5, 6]
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Considering the ballooning stability of a magnetic dipole configuration, we notice that
short-wavelength ballooning modes bend magnetic field lines, which, along with plasma
compression, has stabilizing influence on the modes. The infinite n integro-differential
ballooning equation is [6]
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ξ = 4µ0γpκψ

〈κψξ〉θ
1 + γ 〈β〉θ

, (3)

where ξ is the radial displacement function in the plasma perpendicular displacement
ξ⊥ = (ξ/R2B2)∇ψ, Λ ∝ ω2 and κψ = κ/∇ψ. For a dipole, the field line curvature
κ = b · ∇b is in the ∇ψ direction with b = B/B.



As shown in Ref. [9], some key properties of the eigenvalues Λj, j = 0, 1, 2, . . ., of
Eq. (3) can be determined based on the eigenvalues λj of the corresponding homogeneous
Sturm-Liouville differential equation; that is, Eq. (3) without the right hand side. The
homogenious form of Eq. (3) has a complete set of eigenfunctions ξj with corresponding
distinct eigenvalues λj , that can be arranged as an increasing set for specified boundary
conditions. As the dipole system is up-down symmetric, the eigenfunctions of this Sturm-
Liouville equation are up-down symmetric or antisymmetric, and we assign even (odd)
indices j to the symmetric (antisymmetric) eigenfunctions and eigenvalues in such a way
that the smaller index corresponds to the eigenfunction with a smaller eigenvalue. Notice
that in general the eigenvalues for the even and odd eigenfunctions form two independent
increasing sets as the corresponding boundary conditions are different. It is shown in Ref.
[9] that λ2j+1 = Λ2j+1 ≤ λ2j+3 = Λ2j+3 and λ2j ≤ Λ2j ≤ λ2j+2 ≤ Λ2j+2. As a result,
λ0 ≥ 0 and λ1 ≥ 0 leads to Λj ≥ 0 and ballooning stability, while λ1 ≤ 0 or λ2 ≤ 0
leads to Λ1 ≤ 0 or Λ0 ≤ 0 and ballooning instability. For the subtle case λ0 < 0 < λ2

and λ1 = Λ1 > 0 it is shown in Ref. [9] that the equilibrium is ballooning stable and
Λ0 > 0 (unstable and Λ0 < 0), if it is interchange stable (unstable). Further details of
this analysis are given in Ref. [6].

It is shown in Refs. [5, 6] that the point dipole equilibrium of Ref. [5] is always
interchange stable. Ballooning stability of this equilibrium was studied in Ref. [6], where
it was shown that λ0 < 0 and λ2 > λ1 > 0, so that the point dipole equilibrium is always
ballooning stable because it is interchange stable.

Reference [4] studied interchange and ballooning stability of a high pressure laboratory
plasma confined in the field of a circular floating coil. It was found that a numerically
obtained high beta MHD equilibrium with a peak local beta of β ∼ 10 and volume
averaged beta of β̄ ∼ 0.5 having a pressure profile near marginal stability for interchange
modes, is ballooning stable for the first antisymmetric ballooning mode of Eq. (3) (for
which the right hand side vanishes). Since the lowest symmetric ballooning mode and the
interchange mode are identical at marginality [6], LDX would be MHD stable for such
equilibria.

When radio frequency heating is used to increase the plasma temperature a mild
pressure anisotropy may result. Stronger anisotropies are of interest for space and astro-
physical dipole configurations where the dipole field is generated by a dynamo mechanism.
Consequently, the interchange and ballooning stability of an anisotropic pressure plasma
confined by a dipole magnetic field has also been investigated.

An anisotropic fluid energy principle (which reduces to the isotropic limit) has been
derived in Ref. [11] from the Kruskal-Oberman [12] formulation in which the plasma
is treated kinetically along the magnetic field and as a fluid across the magnetic field.
Anisotropic forms of the interchange stability criterion and of the ballooning mode equa-
tion, including plasma compressibility, have been obtained. This stability analysis has
been applied to the anisotropic pressure family of point dipole equilibria [10]. The mirror
instability or firehose instability set limits on the achievable plasma beta, β0, when the
perpendicular pressure p⊥ is greater (mirror) or less than (firehose) the parallel pressure
p‖. In Ref. [11] it was found that the point dipole equilibria of Ref. [10] are interchange
stable for all plasma betas up to these limits, βmm or βfh, whichever is appropriate. At
the same time ballooning modes are stable for all betas up to some critical value, which
is below βmm for 1 < p⊥/p‖ < 8 and is equal to βmm for p⊥/p‖ > 8. At modest anisotropy
the beta threshold may be observable in the high beta plasmas expected in LDX (for
p⊥/p‖ = 1.2 the beta limit becomes βlimit ≈ 6).



3 Low-β Collisional Interchange Modes

We have shown that MHD predicts that at low beta interchange modes limit the pres-
sure gradients that can be stably maintained. Ideal MHD assumes a particularly simple
equation of state and ignores finite Larmor radius effects which can become important for
ions. We would expect a more detailed kinetic stability treatment to produce drift waves
as well as MHD “fluid” modes. We can shed light on this expectation by considering the
stability of electrostatic interchange modes in a collisional plasma [7].

To compare the MHD results with those of kinetic theory we define ω∗pi ≡ (cTin/Zie)×
(p−1dp/dψ) and ωdi ≡ (cTin/RBZie) [eζ · b × (∇ lnB + κ)], so that 〈ωdi〉θ = − (cTin/Zie)×
(ν−1dν/dψ), where c is the speed of light, Ti = Ti (ψ) and Zie are the ion temperature
and charge, and n � 1 is the toroidal mode number. At low β the MHD stability con-
dition (the interchange stability condition, given by Eq. (2)) can then be written as
ω∗pi < γ 〈ωdi〉θ or d < 5

3
, where d = −d ln p/d ln ν.

We wish then to solve Boltzmann equation in the high collision frequency limit for
both ions and electrons and therefore apply the following orderings:

Ω � ωb � νc � ω∗ ∼ ωd ∼ ω, (4)

with Ω the cyclotron frequency, ωb the bounce frequency, νc the collision frequency, ω∗
the diamagnetic drift frequency, and ωd the magnetic curvature drift frequency.

Following the treatment of Ref. [7] we can obtain the following electrostatic plasma
dispersion relation:
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where λ = ω/ 〈ωdi〉θ and b̄ ≡ 〈k2
⊥Ti/MiΩ

2
i 〉θ, with Mi and Ωi ion mass and Larmor radius

in the field B.
This equation has two classes of solutions - high-frequency or “MHD-like” modes for

which λ � 1 and low-frequency or “drift temperature gradient” (or DTG) modes for
which λ ∼ 1. The modes are uncoupled for b̄1/2 � |d − 5/3|. The “MHD-like” mode is
obtained when the first term of the dispersion relation (5) is balanced by the third term,
so that we find
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= ±
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]1/2

. (6)

This mode is stable (unstable) when d < 5/3 (d > 5/3), as found earlier from ideal MHD.
To consider the DTG modes we neglect the finite Larmor radius terms proportional to b̄
in the dispersion relation, and obtain
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The dispersion relation (5) in its full form was solved numerically by Kesner [7]. It
was found that there is always a stable region for the electrostatic modes near d = 5/3
and η = 2/3. The numerical results are shown in Fig. 2 and are in a good agreement
with the preceding analytic predictions except in the vicinity of d = 5/3 and η = 2/3.
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Figure 1: High β equilibrium (βmax =
25) solution in the LDX geometry.
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Figure 2: Exact stability boundaries
for b̄=0.1, 0.01 compared with the ideal
MHD boundary.
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