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Synopsis

 We observe a fast growing flute-like mode that drives rapid 
radial transport of plasma particles and energy
‣ Identified as the “hot electron interchange” (HEI) mode

‣When stabilized, LDX plasmas reach a high-β operational regime

 The most effective experimental control for the mode is 
the neutral gas fueling
‣Higher neutral gas pressure stabilizes the mode

‣  destabilizes it (sometimes dramatically)

‣Observed hysteresis in required fueling consistent with 
simplified theory

 Other controls, and other control problems in LDX  



 Toroidal system without toroidal 
field

 Closed field lines
‣ no magnetic shear

‣ “bad curvature”

 Adiabatically invariant pressure 
profile is marginal to MHD 
interchange

 Kinetic stability: 

Dipole stability derives from plasma compressibility

If p1V1
γ = p2V2

γ ,  then interchange does 
not change pressure profile.

For η = d lnT
d ln n

=
2
3

,  density and 

temperature profiles are also stationary.

δ(pV γ) = 0



LDX Experiment Cross-Section

2 m

 Superconducting dipole 
magnet I > 1 MA

 Large 5 m diameter 
vacuum vessel

 Expansive diagnostic 
access

 Dipole supported by 
three thin spokes

 Two ECRH heating 
frequencies provide up 
to 5 kW power

Hoist

Inductive
Charging



The Levitated Dipole Experiment (LDX)



The Levitated Dipole Experiment (LDX)



Plasma Diagnostic Set

 Magnetic equilibrium
‣ flux loops, Bp coils, Hall effect sensors

 Fast electrons
‣ 4 Channel x-ray PHA, x-ray detector, Hard X-ray camera

 Core parameters
‣ interferometer, visible cameras, visible diode and array 

 Fluctuations
‣Edge Isat and Vf probes, Mirnov coils, visible diode array, 

interferometer

 Edge parameters
‣ swept probes



Typical LDX Plasma

 Setup for Shot 50701014

‣Small D2 gas pre-fill

‣ECRH power for 12 seconds

 Three regimes observed

‣Short initial unstable

‣Stable high-β

‣Afterglow 





Typical Shot: Indicates 3 regimes                 

 Unstable Regime: 
‣ Fast electron radial transport

‣ Low density

‣ Low diamagnetism (low β)

 High Beta Regime:  
‣ Large diamagnetic current 

‣ Measurable density. 

‣ β loss events accompanied by 
xray bursts

‣ Low frequency edge electric and 
magnetic fluctuations

 Afterglow: (no input power)
‣ Low density

‣ Slow diamagnetism decay

‣ Quiescent with instability bursts
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Visible

Fast Electrons: Anisotropic at ECRH Resonance



VisibleX-Ray
E > 40 keV

Fast Electrons: Anisotropic at ECRH Resonance



Characteristics of the Stable (High-β) Regime

 Quasi steady state

 Bulk plasma has 10x increased density
‣Edge density ~ 1010 cm-3 

‣Peak density near ECRH cutoff ~ 1011 cm-3

 Fast electron population with 100-200 keV energies

 Significant diamagnetic current > 3 kA
‣Afterglow indicates the current is carried by fast electrons

‣Magnetic reconstruction:  

 Peak local beta: ~ 20%

 Stored energy: 330 J (with 5 kW of input power ➠ )



LDX Parameters in high-β Regime

Hot Electron Plasma

• Density:  neh<< neb

 Temperature: Teh>>Teb

‣ Hot electron energy > 

50 keV, ωdh~1-10 MHz

 Pressure
‣ Core 200 Pa. 

‣ βmax ~ 20%

 Confinement
‣ Stored energy ~ 200 J, 

“τE” ~ 50 msec.

 Background Plasma
 Density

  Core: <nl>~1-5 x 1016 m-3

 ncutoff(2.45 GHz)= 7.6e16 m-3  @ 
R0=0.78 m

 ncutoff(6.4 GHz)  = 5.2e17 m-3 @ 
R0=0.60 m

 Edge density 1-2 x 1016 m-3

 Temperature:
 Edge temperature ~10-20 eV, ω*b 

~1-10 KHz

 Pressure
 Edge 0.01 Pa
PCore/Pedge~10000 

ECH creates a hot electron component within a 
background plasma. 



Controlling the High-β with Gas Puffing

 With sufficient neutral gas pressure, plasma enters high-β 
regime

 With insufficient neutral gas pressure, the plasma will 
become unstable (sometimes violently)

 A hysteresis is the observed thresholds implies the 
bifurcation of the low density unstable and stable high-β 
regimes

 Qualitatively consistent with theory of the Hot Electron 
Interchange Mode stability
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In unstable regime, quasi-continuous HEI 
instability prevents plasma build-up …
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HEI Instability Can Terminate High-β Plasma
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0
2

4

6

8

10 PhotoDet (A.U.) S50513028

0

1

2

3

X-Ray (A.U.)

-10

-5

0

Edge Isat (A.U.)

0.791 0.792 0.793 0.794
time (s)

0.790

-0.01
0.00
0.01

Mirnov (A.U.)

High Beta Low Beta

Outward
Transport

Inward
Transport



HEI ⇒ Hysteresis in Gas Requirements 

 High fueling needed to 
stabilize HEI, increase 
density, and increase beta
‣Unstable regime evolves 

gas from vessel walls by 
surface heating

 Once stable, less fueling 
is needed to maintain 
stability
‣Without continued puffing, 

plasma pumps required gas 
from chamber
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HEI ⇒ Hysteresis in Gas Requirements 

 High fueling needed to 
stabilize HEI, increase 
density, and increase beta
‣Unstable regime evolves 

gas from vessel walls by 
surface heating

 Once stable, less fueling 
is needed to maintain 
stability
‣Without continued puffing, 

plasma pumps required gas 
from chamber
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Hysteresis in evolution of stability limit

 Unstable regime has high fh and 40 keV electrons

 Increased gas fueling ⇒ stabilization ⇒ fh to drop by 1/10

 In high-β regime, fast electrons heat ⇒ higher stability limit
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Pre-programmed Optimization

 Careful programming of 
puffing rate gave highest 
plasma stored energy

‣ Maintain small but stable neutral 

 Stored energy increases with 
less neutrals

‣ Less pitch angle scattering of 
fast electrons

 Small puff before afterglow to 
(nonlinearly) stabilize initial 
HEI in afterglow

 Feedback system planned for 
next run...
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Other Controls on HEI stability

 Weak trend with 
total ECRH power

‣More power requires 
more neutrals

 Heating profile has 
dramatic effect

 Plasma shaping also 
has dramatic effect

‣Smaller plasmas 
need higher neutral 
pressure
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Other control issues: Low frequency mode
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•Low frequency (few kHz) core fluctuation also effected by fueling 



Levitation Control System

 150A, +/- 100V Power Supply
‣ Integrated dump resistor for rapid 

discharge

 Realtime digital control computer
‣ Matlab/Simulink Opal-RT 

development environment

‣ 5 kHz feedback loop

‣ Failsafe backup for upper fault

 Programmable Logic Controller
‣ Slow fault conditions

‣ Vacuum & Cryogenic monitoring

‣ PS user interface

 Optical link to control room 
‣ User interface

‣ LDX data system



Summary

 Stable high-β plasmas are created in LDX in supported 
operation

‣Plasma energy is carried by fast electrons in a highly localized 
peak near ECRH resonance

 High requires sufficient neutral gas pressure to stabilize 
hot electron interchange mode

‣Demonstrable hysteresis in threshold levels for transition to and 
from unstable regime is consistent with theory

 Plasma confinement is optimized when fueling is 
controlled

 Other interesting  control problems in the near future

‣ Including first levitation!



LCX II: Digitally Controlled Levitation

 Levitated Cheerio Experiment II

 Uses LDX digital control system
‣ Test at 10 times the frequency 

required

 Modified PID feedback system
‣ Low pass filter added for high 

frequency roll-off of derivative 
gain

‣ Stimulated work on Kalman 
filtering system for LDX control

 Real-time graph shows position 
and control voltage
‣ Wiggles indicate non-linearly 

stable rolling mode…


