

Controlling Interchange Instabilities in the Levitated Dipole Experiment

Columbia University

Darren Garnier For the LDX Team

2006 US-Japan MHD Control Workshop JAEA, Naka, Japan Monday, February 6, 2006

Synopsis

- We observe a fast growing flute-like mode that drives rapid radial transport of plasma particles and energy
 - Identified as the "hot electron interchange" (HEI) mode
 - When stabilized, LDX plasmas reach a high-β operational regime
- The most effective experimental control for the mode is the neutral gas fueling
 - Higher neutral gas pressure stabilizes the mode
 - destabilizes it (sometimes dramatically)
 - Observed hysteresis in required fueling consistent with simplified theory
- Other controls, and other control problems in LDX

Dipole stability derives from plasma compressibility

If $p_1 V_1^{\gamma} = p_2 V_2^{\gamma}$, then interchange does not change pressure profile.

- Toroidal system without toroidal field
- Closed field lines
 - no magnetic shear
 - "bad curvature"
- Adiabatically invariant pressure profile is marginal to MHD interchange

 $\delta(pV^{\gamma}) = 0$

• Kinetic stability:

For $\eta = \frac{d \ln T}{d \ln n} = \frac{2}{3}$, density and temperature profiles are also stationary.

LDX Experiment Cross-Section

Superconducting dipole Hoist magnet I > 1 MA Large 5 m diameter vacuum vessel 2.45 GHz **Expansive diagnostic** access Dipole supported by 6.4 GHz three thin spokes Inductive Charging Two ECRH heating frequencies provide up to 5 kW power

2 m

The Levitated Dipole Experiment (LDX)

The Levitated Dipole Experiment (LDX)

Plasma Diagnostic Set

Magnetic equilibrium

flux loops, Bp coils, Hall effect sensors

Fast electrons

▶ 4 Channel x-ray PHA, x-ray detector, Hard X-ray camera

Core parameters

interferometer, visible cameras, visible diode and array

Fluctuations

Edge I_{sat} and V_f probes, Mirnov coils, visible diode array, interferometer

Edge parameters

swept probes

Typical LDX Plasma

- Setup for Shot 50701014
 - Small D₂ gas pre-fill
 - ECRH power for 12 seconds
- Three regimes observed
 - Short initial unstable
 - Stable high-β
 - Afterglow

Typical Shot: Indicates 3 regimes

Unstable Regime:

- Fast electron radial transport
- Low density
- Low diamagnetism (low β)
- High Beta Regime:
 - Large diamagnetic current
 - Measurable density.
 - β loss events accompanied by xray bursts
 - Low frequency edge electric and magnetic fluctuations
- Afterglow: (no input power)
 - Low density
 - Slow diamagnetism decay
 - Quiescent with instability bursts

Fast Electrons: Anisotropic at ECRH Resonance

Fast Electrons: Anisotropic at ECRH Resonance

- Quasi steady state
- Bulk plasma has 10x increased density
 - Edge density ~ 10¹⁰ cm⁻³
 - Peak density near ECRH cutoff ~ 10¹¹ cm⁻³
- Fast electron population with 100-200 keV energies
- Significant diamagnetic current > 3 kA
 - Afterglow indicates the current is carried by fast electrons
 - Magnetic reconstruction:
 - Peak local beta: ~ 20%
 - Stored energy: 330 J (with 5 kW of input power w)

LDX Parameters in high- β Regime

ECH creates a hot electron component within a background plasma.

Hot Electron Plasma

- Density: n_{eh}<< n_{eb}
- Temperature: T_{eh}>>T_{eb}
 - Hot electron energy >
 50 keV, ω_{dh}~1-10 MHz
- Pressure
 - Core 200 Pa.
 - ▶ β_{max} ~ 20%
- Confinement
 - Stored energy ~ 200 J,
 - "τ_E" ~ 50 msec.

Background Plasma

- Density
 - Core: <nl>~1-5 x 10¹⁶ m⁻³
 - n_{cutoff}(2.45 GHz)= 7.6e16 m⁻³ @ R₀=0.78 m
 - n_{cutoff}(6.4 GHz) = 5.2e17 m⁻³ @ R₀=0.60 m
 - Edge density 1-2 x 10¹⁶ m⁻³
- Temperature:
 - Edge temperature ~10-20 eV, ω_{*b}
 ~1-10 KHz
- Pressure

Edge 0.01 Pa P_{Core}/P_{edge}~10000

Controlling the High- β with Gas Puffing

- With sufficient neutral gas pressure, plasma enters high-β regime
- With insufficient neutral gas pressure, the plasma will become unstable (sometimes violently)
- A hysteresis is the observed thresholds implies the bifurcation of the low density unstable and stable high-β regimes
- Qualitatively consistent with theory of the Hot Electron Interchange Mode stability

High- β Plasma Begins Upon HEI Stabilization

In unstable regime, quasi-continuous HEI instability prevents plasma build-up ...

HEI Instability Can Terminate High-β Plasma

HEI \Rightarrow **Hysteresis** in Gas Requirements

- High fueling needed to stabilize HEI, increase density, and increase beta
 - Unstable regime evolves gas from vessel walls by surface heating
- Once stable, less fueling is needed to maintain stability
 - Without continued puffing, plasma pumps required gas from chamber

HEI \Rightarrow **Hysteresis** in Gas Requirements

- High fueling needed to stabilize HEI, increase density, and increase beta
 - Unstable regime evolves gas from vessel walls by surface heating
- Once stable, less fueling is needed to maintain stability
 - Without continued puffing, plasma pumps required gas from chamber

- Unstable regime has high f_h and 40 keV electrons
- Increased gas fueling ⇒ stabilization ⇒ f_h to drop by 1/10
- In high- β regime, fast electrons heat \Rightarrow higher stability limit

- Unstable regime has high f_h and 40 keV electrons
- Increased gas fueling ⇒ stabilization ⇒ f_h to drop by 1/10
- In high- β regime, fast electrons heat \Rightarrow higher stability limit

- Unstable regime has high f_h and 40 keV electrons
- Increased gas fueling \Rightarrow stabilization \Rightarrow f_h to drop by 1/10
- In high- β regime, fast electrons heat \Rightarrow higher stability limit

- Unstable regime has high f_h and 40 keV electrons
- Increased gas fueling \Rightarrow stabilization \Rightarrow f_h to drop by 1/10
- In high- β regime, fast electrons heat \Rightarrow higher stability limit

- Unstable regime has high f_h and 40 keV electrons
- Increased gas fueling \Rightarrow stabilization \Rightarrow f_h to drop by 1/10
- In high- β regime, fast electrons heat \Rightarrow higher stability limit

- Unstable regime has high f_h and 40 keV electrons
- Increased gas fueling ⇒ stabilization ⇒ f_h to drop by 1/10
- In high- β regime, fast electrons heat \Rightarrow higher stability limit

Pre-programmed Optimization

 Careful programming of puffing rate gave highest plasma stored energy

Maintain small but stable neutral

- Stored energy increases with less neutrals
 - Less pitch angle scattering of fast electrons
- Small puff before afterglow to (nonlinearly) stabilize initial HEI in afterglow
- Feedback system planned for next run...

Other Controls on HEI stability

- Weak trend with total ECRH power
 - More power requires more neutrals
- Heating profile has dramatic effect
- Plasma shaping also has dramatic effect
 - Smaller plasmas need higher neutral pressure

Other control issues: Low frequency mode

Low frequency (few kHz) core fluctuation also effected by fueling

Levitation Control System

- 150A, +/- 100V Power Supply
 - Integrated dump resistor for rapid discharge
- Realtime digital control computer
 - Matlab/Simulink Opal-RT development environment
 - 5 kHz feedback loop
 - Failsafe backup for upper fault
- Programmable Logic Controller
 - Slow fault conditions
 - Vacuum & Cryogenic monitoring
 - PS user interface
- Optical link to control room
 - User interface
 - LDX data system

Summary

- Stable high-β plasmas are created in LDX in supported operation
 - Plasma energy is carried by fast electrons in a highly localized peak near ECRH resonance
- High requires sufficient neutral gas pressure to stabilize hot electron interchange mode
 - Demonstrable hysteresis in threshold levels for transition to and from unstable regime is consistent with theory
- Plasma confinement is optimized when fueling is controlled
- Other interesting control problems in the near future
 Including first levitation!

LCX II: Digitally Controlled Levitation

- Levitated Cheerio Experiment II
- Uses LDX digital control system
 - Test at 10 times the frequency required
- Modified PID feedback system
 - Low pass filter added for high frequency roll-off of derivative gain
 - Stimulated work on Kalman filtering system for LDX control
- Real-time graph shows position and control voltage
 - Wiggles indicate non-linearly stable rolling mode...