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Synopsis

e Levitation will likely greatly change operation of LDX
Dominant loss channel removed -> better confinement
Higher background density with high beta -> more stable to HEI
Radial transport dominated (broader) profile -> more stable

e |evitation system nearly complete
Coil and control systems installation complete
Calibration and control algorithm development underway
Laser detection system prototype complete
Catcher system under construction

e Levitation system testing in progress
3 major tests planned to give confidence in successful levitation



Hot Electron Interchange Stability

e Bulk plasma must satisfy MHD adiabaticity condition
Rosenbluth and Longmire, (1957)
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* Fast electron stability enhanced due to coupling of fast
electrons to background ions Krall (1966), Berk (1976)...
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Increased Neutral Fueling Stabilizes HEI

e Stabilizes small HEI
More background density
Smaller hot electron fraction

® But loss of confinement

Pitch angle scattering to
supports.

e Levitation changes

Pitch angle scattering gives
more isotropic distribution

Collisions lead to broader radial
profile

Higher overall confinement
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LDX Levitation Basics

e Levitation by upper lift magnet
Unstable only to vertical motion L-coil

Mostly undamped stable secondary
modes

e HTS lift magnet

First in US Fusion program

Much reduced power and cooling ! |
requirements |

AC heating introduces unique
requirements for control system

e Large 5 m diameter vacuum
vessel

Eddy current times << levitation time

e Laser position detection
Many secondary diagnostics

* Digital feedback system
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Generation Il Catcher

® New catcher under construction

» Lightweight cone that will accelerate to
match F-coil fall without large impulse

» Partial F-coil deceleration while launcher
mass accelerates

» Limit all accelerations to less than 5 g

® Upper space frame
» Limit upward motion

» Align radial motion
for fall to catcher




L-Coil Design

® High Temperature Superconductor.
Negligibly power consumption compared to resistive equivalent.
Nominal 105 A current, with £ 1 A, 1 Hz position control ripple.
Easier to manage position control ac loss than for LTS.
Funded by SBIR, first HTS coil in US fusion energy program.
* Optimized, disk-shape geometry for F-coil levitation.
Double pancake winding. \ITROGEN

Center support and cooling plate. 1 CRYOCOOLER RESERVOIR
CURRENT \

® Conduction cooled coil. FEEDTHROUGHG | F%
Low maintenance, moderate cost, LEAD I T
_ THERMAL---_é 4 S
high conductor performance. ANCHOR | i L s
Estimated 12 W hysteresis loss. TS f M iy E 1 | E l
One-stage cryocooler for coil. LEAD" | = =N
- 144.8 >< -
¢ 20W @ 20K LEAD COOLING COIL COOLING
BLOCK RING

Liquid nitrogen reservoir
for radiation shield.



Levitation Control System
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LDX Control System Description

150A, +/- 100V Power Supply

Integrated dump resistor for rapid discharge

Realtime digital control computer

Matlab/Simulink Opal-RT development environment
5 kHz feedback loop

Failsafe backup for upper fault

Programmable Logic Controller
Slow fault conditions
Vacuum & Cryogenic monitoring
PS user interface

Optical link to control room
User interface
LDX data system



Levitation Control System Schematic

Levitation Coil
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Optical Position Detection System

* Position/Attitude Sensing

» Occulting system of 8 beams
* Provides measurement of 5 degrees of freedom
of coil with redundancy in each measurement
» Specification
* *1 cm detection range
¢ 5 um resolution
* 5 kHz frequency response

» Keyence LH-300 COTS units

* Exceed all specifications

* Procured with 2 channels installed on prototype
mounting hardware

* Require plasma test for final mount production OK

® Rotation Sensing

» Reflecting system to sense final degree
of freedom

» Remove Nonaxisymmetry systematic
noise correction
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Levitation Physics

We can choose a Lagrangian formulation of the equation of motion so the constraints
above can be easily incorporated:
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Where: MLF — MLF(XHS)

L-coil
F-coil is a superconducting loop, so its flux is
conserved, whereas we can vary the flux in
Z the L-coil by applying our control voltage:
F /
mag
O, =M,.1.1, + L1, =constant
] ' And:
F : y
coil
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Feedback stabilization

The upward force on the F-coil is proportional to the radial magnetic field at
its position, generated by the L-coil.
> Hence, it is proportional to the current in the L-coil.

Without feedback, the vertical position is unstable because dBR/dz>0, so if
the F-coil moves up, the upward electromagnetic force will increase, and the
coil will move even further up.

If we detect a small increase in vertical position, and decrease the L-coil
current appropriately, we can bring the coil back to its original position.

Simple Approach: Use proportional-integral-derivative (PID) feedback:

I (t)= I - aofs(t)dt —a1e(t)— ar €' (1)

SN

Automatic correction to |, Damping term, acts like friction



Feedback: Optimized Voitage PID

Because of the L-coil inductance, we cannot change IL instantaneously. We
can control the voltage=L*dIL/dt, instantaneously (or as fast as the power
supply allows us to change its voltage):

Vi(t)= -bye(t) - big' (1) - bye'' (1)
Include an integral term to automatically adjust for DC losses:

Vi ()= —b_lfe(t)dt —boge(t) —b1€' (1) —=bye' (1)

The b parameters are optimized to get the best stabilization:

> Put feedback expression into equation of motion to find most stable, critically
damped solution

Technique used to estimate required currents / voltages for L-coil

Similar technique (using only derivative gain) used to determine required
current for damping Rock & Roll motion using TSR coils

» ~ 200 Amp turns required...



Basic Simulink Levitation Model
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* This basic model simulates 6 degrees of freedom of F-coil with L-coil
levitation using voltage feedback control.



Levitation Physics - Simulink Model

... solving for the magnetic force on the F-coil due to the L-coil in terms of
the flux gives:
(MLF(I)F - LF(I)L )(MLF(I)L - LL(I)F)
(LLLF - 1‘4le2)2
This equation translated to a Simulink model might look like:
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Basic Levitation Model Results

F-coil Z Position

~ 771 e Control parameters as

calculated from analytic

— optimization for voltage PID loop

N T AT T 7 Simulations stay within L-coil supply
specifications

¢ Simulink works!

Results match previous numerical
simulations

S S Analytic analysis eigenmodes are 1.0
‘F-coil \/ertica! Accel‘eration‘ | | 7 and 04 HZ

¢ On to implementation!
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LDX Control System State Machine

* Design of simple levitation controllers requires linear
approximation of dynamics near operational point

e But magnetic forces are go like L3

* Use a state machine to ensure safe operation of system
while not near flight status

Simulink Stateflow handles state machine in LDX control design



System Simulink/Stateflow Model
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L-coil Power Supply Simulation
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Model of 12 pulse switch regulated power supply for L-coil
Uses Simulink Power System Blockset

Internal voltage control feedback loop
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State System Simulation

* Complete functional model

» Includes human check wait
states

» Automatic failure modes
tested
* Z Position Graph
Srmion ] > Shows launcher in action
» Current ramp of L-coil
» Pre-flight check
< _ > (Premature) launch

| wiaiting for being lited
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More Full Simulation Results
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L-coil supply voltage ripple
» ~ 40 volt ripple
» Current ripple is < 50mA
» No filtering required

Some state machine bugs...



LCX II: Digitally Controlled Levitation

* Levitated Cheerio Experiment i

* Uses LDX digital control system
» LCX | was analog demonstration

* Modified PID feedback system

» Low pass filter added for high
frequency roll-off of derivative
gain

> Integral reset feature for launch
transition

* Dynamic model block replaced
by 1/0 and estimators

* Real-time graph shows position
and control voltage

» Wiggles indicate non-linearly
stable rolling mode...

Time offset 510
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Noise reduction necessary

* Noise reduction necessary for derivative gains

* Multipole filter noise reduction limited due to added phase
delay

z[t] with Single-Pole Filters I[t]
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Kalman Filter Simulation

Kalman filter can be used to reduce noise with minimal latency

Uses a physics based predictor that tracks the real motion and is
updated with every time step

Actual F-Coil z[t] Meas & State F-Coil z
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Kalman Filter Reduces L-coil AC Losses

® Kalman filter I'ESU"ZS <I>ﬁ—Coil Current Power Spectrum

2 c

Ln;?;:\i,:i;lslizkgreatly reduces 1;; Single Pole Filter

1.25¢

Reduced noise leads to reduced 1)

AC heating of L-coil >
e Kalman filter with simple 0.25) | | ‘ ‘ |
feedback sufficient S

Simulations show this method =, J/i-Coil Current Power Spectrum

should meet our requirements | Kalman Filter
for stable levitation
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Control System Development

* Integrated test results

System identification to ensure observed behavior
matches system model

Identification of model parameters
. pr& B! in1 outt N
* Formal check of observability and | " Output Point
control Iab i I ity Floating Coil Dynamics
® Optimal ContrOI Theory coil voltage output F-coil state measurement 1 @——
MIMO System Simulation Feedback System

Optimal control with balance of minimization of
noise and L-coil heating explicitly

Ensure control system won’t add noise to stable
modes

® Further state machine testing



Levitation Test Program

V' System integration test

Test inter-operation of cryogenic and two control systems

e L-coil Integrated Performance Test
Test L-coil cryogenic performance under worst-case operation point
+ Gather data to determine HTS coil quench detection algorithm
Calibrate “transfer function” of L-coil System
* Check state space model for unknown system variables
* |[ntegrated System Plasma Test

Characterize noise on levitation diagnostics in plasma environment

Operate L-coil systems at 1/2 current with plasma present
+ Calibrate system using measured lift forces

e Levitation Test
First levitation with nearby supports and safety lines

e Levitated Plasma Operations begin



