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Synopsis

 Levitation will likely greatly change operation of LDX
‣Dominant loss channel removed -> better confinement

‣Higher background density with high beta -> more stable to HEI

‣Radial transport dominated (broader) profile -> more stable

 Levitation system nearly complete
‣Coil and control systems installation complete

‣Calibration and control algorithm development underway

‣ Laser detection system prototype complete

‣Catcher system under construction

 Levitation system testing in progress
‣ 3 major tests planned to give confidence in successful levitation



 Bulk plasma must satisfy MHD adiabaticity condition

 Fast electron stability enhanced due to coupling of fast 
electrons to background ions

Hot Electron Interchange Stability

Krall (1966), Berk (1976)...

Rosenbluth and Longmire, (1957) 
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Increased Neutral Fueling Stabilizes HEI

 Stabilizes small HEI
‣More background density

‣Smaller hot electron fraction

 But loss of confinement
‣Pitch angle scattering to 

supports.

 Levitation changes
‣Pitch angle scattering gives 

more isotropic distribution

‣Collisions lead to broader radial 
profile

‣Higher overall confinement
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LDX Levitation Basics

2 m

 Levitation by upper lift magnet
‣ Unstable only to vertical motion

‣ Mostly undamped stable secondary 
modes

 HTS lift magnet
‣ First in US Fusion program

‣ Much reduced power and cooling 
requirements

‣ AC heating introduces unique 
requirements for control system

 Large 5 m diameter vacuum 
vessel
‣ Eddy current times << levitation times

 Laser position detection
‣ Many secondary diagnostics

 Digital feedback system

L-coil

F-coil



Generation II Catcher

 New catcher under construction
‣ Lightweight cone that will accelerate to 

match F-coil fall without large impulse

‣Partial F-coil deceleration while launcher 
mass accelerates

‣ Limit all accelerations to less than 5 g

 

 

 Upper space frame
‣ Limit upward motion

‣Align radial motion 
for fall to catcher



L-Coil Design

 High Temperature Superconductor.

‣ Negligibly power consumption compared to resistive equivalent.

‣ Nominal 105 A current, with ± 1 A, 1 Hz position control ripple.

‣ Easier to manage position control ac loss than for LTS.

‣ Funded by SBIR, first HTS coil in US fusion energy program.

 Optimized, disk-shape geometry for F-coil levitation.

‣ Double pancake winding.

‣ Center support and cooling plate.

 Conduction cooled coil.

‣ Low maintenance, moderate cost, 

 high conductor performance.

‣ Estimated 12 W hysteresis loss.

‣ One-stage cryocooler for coil.
 20W @ 20K

‣ Liquid nitrogen reservoir 

 for radiation shield.



Levitation Control System



LDX Control System Description

 150A, +/- 100V Power Supply
‣ Integrated dump resistor for rapid discharge

 Realtime digital control computer
‣ Matlab/Simulink Opal-RT development environment

‣ 5 kHz feedback loop

 Failsafe backup for upper fault

 Programmable Logic Controller
‣ Slow fault conditions

‣ Vacuum & Cryogenic monitoring

‣ PS user interface

 Optical link to control room 

 User interface

 LDX data system



Levitation Control System Schematic



Optical Position Detection System

 Position/Attitude Sensing
‣ Occulting system of 8 beams
 Provides measurement of 5 degrees of freedom 

of coil with redundancy in each measurement

‣ Specification
 ± 1 cm detection range

 5 µm resolution

 5 kHz frequency response

‣ Keyence LH-300 COTS units
 Exceed all specifications

 Procured with 2 channels installed on prototype 
mounting hardware
• Require plasma test for final mount production OK

 Rotation Sensing
‣ Reflecting system to sense final degree 

of freedom

‣ Remove Nonaxisymmetry systematic 
noise correction 



Levitation Physics
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We can choose a Lagrangian formulation of the equation of motion so the constraints 
above can be easily incorporated:
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F-coil is a superconducting loop, so its flux is 
conserved, whereas we can vary the flux in 
the L-coil by applying our control voltage:

€ 

ΦF = MLFIFIL + LFIF = constant
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Feedback stabilization

IL (t )= I0 − a0 ε (t)dt − a1ε (t)− a2ε'∫ (t)

Automatic correction to I0 Damping term, acts like friction

 The upward force on the F-coil is proportional to the radial magnetic field at 

its position, generated by the L-coil.

 Hence, it is proportional to the current in the L-coil.

 Without feedback, the vertical position is unstable because dBR/dz>0, so if 
the F-coil moves up, the upward electromagnetic force will increase, and the 

coil will move even further up.

 If we detect a small increase in vertical position, and decrease the L-coil 
current appropriately, we can bring the coil back to its original position. 

 Simple Approach: Use proportional-integral-derivative (PID) feedback:



 Because of the L-coil inductance, we cannot change IL instantaneously. We 
can control the voltage=L*dIL/dt, instantaneously (or as fast as the power 
supply allows us to change its voltage):

 Include an integral term to automatically adjust for DC losses:

 The b parameters are optimized to get the best stabilization:
 Put feedback expression into equation of motion to find most stable, critically 

damped solution 

 Technique used to estimate required currents / voltages for L-coil

 Similar technique (using only derivative gain) used to determine required 
current for damping Rock & Roll motion using TSR coils 
 ~ 200 Amp turns required…

Feedback: Optimized Voltage PID

VL (t )= −b0ε (t)− b1ε' (t)− b2ε' ' (t)

VL (t )= −b−1 ε (t)dt∫ −b0ε(t) −b1ε' (t) −b2ε ' ' (t)



Basic Simulink Levitation Model

 This basic model simulates 6 degrees of freedom of F-coil with L-coil 
levitation using voltage feedback control.
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Levitation Physics - Simulink Model

… solving for the magnetic force on the F-coil due to the L-coil in terms of 
the flux gives:

This equation translated to a Simulink model might look like:
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Basic Levitation Model Results

 Control parameters as 
calculated from analytic 
optimization for voltage PID loop
‣ Simulations stay within L-coil supply 

specifications

 Simulink works!
‣ Results match previous numerical 

simulations

‣ Analytic analysis eigenmodes are 1.0 
and 0.4 Hz

 On to implementation!
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LDX Control System State Machine

 Design of simple levitation controllers requires linear 
approximation of dynamics near operational point

 But magnetic forces are go like L3

 Use a state machine to ensure safe operation of system 
while not near flight status

‣Simulink Stateflow handles state machine in LDX control design
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L-coil Power Supply Simulation

 Model of 12 pulse switch regulated power supply for L-coil
‣ Uses Simulink Power System Blockset

 Internal voltage control feedback loop
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State System Simulation

 Complete functional model
 Includes human check wait 

states
Automatic failure modes 

tested

 Z Position Graph
 Shows launcher in action
Current ramp of L-coil
 Pre-flight check
 (Premature) launch
 Free flight



More Full Simulation Results

 Vibrating launcher spring 
 L-coil supply voltage ripple

 ~ 40 volt ripple

 Current ripple is < 50mA

 No filtering required

 Some state machine bugs…



LCX II: Digitally Controlled Levitation

 Levitated Cheerio Experiment II
 Uses LDX digital control system

 LCX I was analog demonstration

 Modified PID feedback system
 Low pass filter added for high 

frequency roll-off of derivative 
gain

 Integral reset feature for launch 
transition

 Dynamic model block replaced 
by I/O and estimators

 Real-time graph shows position 
and control voltage
 Wiggles indicate non-linearly 

stable rolling mode…



Noise reduction necessary

 Noise reduction necessary for derivative gains

 Multipole filter noise reduction limited due to added phase 
delay
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Kalman Filter Simulation

 Kalman filter can be used to reduce noise with minimal latency 
‣ Uses a physics based predictor that tracks the real motion and is 

updated with every time step
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Kalman Filter Reduces L-coil AC Losses

 Kalman filter results
‣ Improved filter greatly reduces 

noise in system

‣Reduced noise leads to reduced 
AC heating of L-coil

 Kalman filter with simple 
feedback sufficient
‣Simulations show this method 

should meet our requirements 
for stable levitation
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Control System Development

 Integrated test results
‣ System identification to ensure observed behavior 

matches system model

‣ Identification of model parameters

 Formal check of observability and 
controllability

 Optimal Control Theory
‣ MIMO System Simulation

‣ Optimal control with balance of minimization of 
noise and L-coil heating explicitly

‣ Ensure control system won’t add noise to stable 
modes

 Further state machine testing
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Levitation Test Program

✓ System integration test
‣ Test inter-operation of cryogenic and two control systems

 L-coil Integrated Performance Test
‣ Test L-coil cryogenic performance under worst-case operation point

 Gather data to determine HTS coil quench detection algorithm

‣ Calibrate “transfer function” of L-coil System
 Check state space model for unknown system variables

 Integrated System Plasma Test
‣ Characterize noise on levitation diagnostics in plasma environment

‣ Operate L-coil systems at 1/2 current with plasma present
 Calibrate system using measured lift forces

 Levitation Test
‣ First levitation with nearby supports and safety lines

 Levitated Plasma Operations begin


