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Abstract
Basic considerations for modeling and measuring anisotropic pressure equilibria in LDX are discussed. We compute 
a least-squares best-fit of a pressure model, introduced previously by Connor-Hastie, to magnetic and x-ray 
measurements. The anisotropic pressure has four parameters: 

(i) The ratio P⊥/P||

(ii) The radial location of the peak pressure, 
(iii) The radial width of the pressure profile, and 
(iv) The plasma diamagnetic current. 

To fit this model to the magnetic measurements, the plasma current is related to the pressure through the self-
consistent equilibrium. Since the detected signal from a magnetic sensor combines contributions from the plasma 
current with the decrease of the current required to maintain constant the flux linked by the superconducting dipole, 
we find equally good fits occur either with steep profiles centered at large radii or with broad profiles centered at 
smaller radii. These equilibrium profiles have similar plasma dipole moments.  

When only single-frequency ECRH is applied, very good fits result for a range of pressure-peak profiles that is 
resolved using x-ray imaging. Plasma with the highest values of beta and diamagnetic current are created with 
multiple-frequency heating. The sum of the mean-square deviations between the best-fit model profile and the 
magnetic measurements doubles as compared with single-frequency heating, and this may be related to the 
presence of two pressure peaks, one at each resonance. With the pressure profile peak assumed to be midway 
between the resonances, then 5 kW of heating creates a plasma with 3.5 kA of plasma current, a peak perpendicular 
pressure of 750 Pa, and a maximum local beta of 21%. 

This poster will present details of the reconstruction procedure and describe new magnetic sensors that will achieve 
improved reconstruction accuracy.



Cluster II
(Launched 16 July 2000)

Measuring Plasma Currents in Space!



Curlometer
(Vallat, et al., Annales Geophys, 2005)

J⊥ =
B ×∇P⊥

B2
+

B × κ

B2
(P|| − P⊥)

C. Vallat et al.: Ring current density CLUSTER data 1861

Table 1. Cluster perigee passes (year 2002) used in the statistical

study. For each pass is indicated the day, month, year, MLT sector

crossed by Cluster at perigee, Dst index and the magnetic activity

conditions.

day month year MLT Dst Conditions

6 2 2002 1.37 −62 storm peak

8 2 2002 1.7 −20 quiet

18 3 2002 22.96 13 quiet

6 4 2002 21.72 10 quiet

8 4 2002 21.8 12 quiet

11 4 2002 21.5 25 quiet

13 4 2002 21.33 −40 storm main phase

20 4 2002 21.0 −91 recovering

23 4 2002 20.9 −23 recovering

27 4 2002 20.7 −4 quiet

30 4 2002 20.31 8 quiet

7 5 2002 19.7 4 quiet

9 5 2002 19.8 −2 quiet

31 5 2002 18.33 6 quiet

2 6 2002 18.0 −13 quiet

4 6 2002 18.3 −10 quiet

7 6 2002 17.6 7 quiet

9 6 2002 17.66 −10 quiet

12 6 2002 17.7 −12 quiet

current did not clearly appear on the curlometer data (sig-

nificant standard deviation in the data). This restricted our

statistical study to 19 perigee passes in total (see Table 1).

The current has been computed using the curlometer tech-

nique, and for each of these passes the tetrahedron parame-

ters (elongation and planarity) have been carefully analysed,

as well as their influence on the relative error made on J ,
which has been evaluated using the study made by Robert et

al. (1998b).

Figure 15b shows the XSM and YSM components of the

current, for each selected event, as averaged in a ±30◦ in-
variant latitude interval around the equatorial plane, and pro-

jected down to the equator. The arrow lengths are propor-

tional to the absolute value of the averaged equatorial cur-

rent density. Figures 15a and c show the same kind of plots

but for higher invariant latitudes, i.e. between 45 and 65◦

above/below the equator in the Northern Hemisphere and in

the Southern Hemisphere, respectively. Various magnetic ac-

tivity levels have been included.

The statistics reproduce very well the general trend of the

ring current, from the dusk sector to the post-midnight sec-

tor. All samples reveal a westward orientation of the current

around the equator, consistent with the gradient and curva-

ture drifts of the energetic protons and electrons. At higher

latitudes (both in the Southern and in the Northern Hemi-

spheres), we still observe the same feature, i.e. a westward

orientation of the current. The azimuthal component of the

westward current is still dominant at higher latitudes, con-

firming the large latitudinal extent of the ring current in that
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Fig. 15. Current density vectors for the February-June 2002 Cluster

perigee passes, averaged over three invariant latitude intervals, and

projected down to the equatorial plane: (a) from 45◦ to 65◦ (b)

from −30◦ to 30◦ (c) from −45◦ to −65◦
.

region (up to 65◦ in invariant latitude), as previously seen for
the 18 March and 20 April events. At these higher latitudes,

particularly in the Southern Hemisphere, we also observe the

increase of the radial component of the current, correspond-

ing to the transition from a pure westward ring current to the

Region 2 field-aligned currents.

The values of Jρ and Jϕ averaged over 30◦ (invariant lat-
itude) around the magnetic equator are plotted as a function



Ring Current:
Trapped, High-β Protons (15-250 keV)

• Greatly intensified during geomagnetic 
storms

• Ti ~ 7Te and P⊥ ~ 1.5 P||

• Monthly storms: ~5 MA. (LDX: 3-4 kA)
10 MA storms few times a year. 

• Current centered near L ~ 4-5Re; 
∆L ~ 2.6Re wide and ∆z ~ 1.6Re; 
Not axisymmetric.

• Curlometer during storms:
 JRC ~ 25 nA/m2 (Cluster II, 2005)

AMPTE/CCE-CHEM Measurements
Averaged over 2 years

(De Michelis, Daglis, Consolini, JGR, 1999)



Dst and the 
Dessler-Parker-Sckopke Relation 

(Burton, McPherron, Russell, JGR, 1975)

Solar Wind Pressure

Solar Wind Convection Field

5 MA
Dst

1-5 Days

• Disturbed Storm Time 
Index (Dst):

∆BH = (µ0/2) × IRC/Rrc 
measured near equator 
plus Earth’s induction fields!
(LDX:  ∆IF ≈ – 0.25 Irc)

• Dessler-Parker-Sckopke:

Energy = 0.54 GJ/A × IRC 
(LDX:  0.12 J/A)



Centrally-Peaked Proton Pressure
(Even with Plasma Sheet, Outer-Edge,  Source!)

AMPTE/CCE-CHEM Measurements
“Quiet Conditions” IRC ~ 1 MA

(De Michelis, Daglis, Consolini, JGR, 1999)

P ~ L-3.3

beta

Earth



Magnetic Sensors

9 Flux Loops
9 Bp Sensors
9 Bn Sensors



Sensors that measure magnetic field and flux.

Hall Probe
Hall Sensor Specs:

•  Field Range:  +/- 500 G

•  Sensitivity:  5 mV/G

Bp-Coil Specs:

•  NA ~ 5 m2

•  Sensitivity:  500 mV/G

   (connected to a 1 ms RC integrator)

•  +/- 0.1 G estimated error

Magnetic Diagnostics Basics

  
  

NA ~ 0.06 m2

L ~ 0.3 mH

• Directly measures dB/dt to detect

  magnetic fluctuations.

• Must be placed inside the vessel

  to be able to measure fast activities. 

Mirnov Coil:

Flux Loop:

• Measures magnetic flux.

• Signal is integrated.

• +/- 0.1 mV• s estimated error 

Bp Coils
and

Hall Sensors



Bp, Bn Sensors
Installed



Anisotropic Equilibria
The equilibrium equations are

J×B = ∇ · P (1)

∇×B = µ0J (2)

∇ · B = 0 (3)

P = P⊥I + (P|| − P⊥)bb (4)

where B = Bb. Free-boundary, high-beta equilibria have been recon-

structed with isotropic pressure. But, with anisotropic pressure, only free-
boundary, low-beta, equilibria have been reconstructed.

The parallel force condition is B · J×B = 0. This implies

∂P||
∂B

= (P|| − P⊥)/B (5)

∂P||
∂s

= (P|| − P⊥)
d lnB

ds
(6)



Equilibrium Current
The perpendicular force balance is given by

J =
B×∇ · P

B2 . (7)

Perpendicular force balance determines the equilibrium diamagnetic cur-

rent density. The right-hand-side of Eq. 7 gives

B×∇ · P = B×∇P⊥+ B×∇ · [bb(P|| − P⊥)]

= B×∇P⊥+ (P|| − P⊥)B× κ

where κ = b · ∇b is the magnetic curvature. The plasma diamagnetic

current is

J =
B×∇P⊥

B2 +
B× κ

B2 (P|| − P⊥) (8)



Vacuum Fields
With about 1 MA·turn flowing in the LDX floating coil and only a few kA

in the plasma, the magnetic fields in the present-day LDX discharges are

very nearly equal to the vacuum fields. In this case, the magnetic curvature

is approximately

κ = −b×∇× b = −b×
[1

B
∇×B−B×∇

(1

B

)]
≈
∇⊥B

B
since ∇×B ≈ 0.

Writing B = ∇φ×∇ψ/2π = ∇χ (note: 2π!), Eq. 8 can be re-written as

Jφ = −2πr
DP⊥
Dψ

− 2πr(P|| − P⊥)
D lnB

Dψ
, (9)

where cylindrical coordinates were used to give |∇φ| = 1/r andD/Dψ ≡
|∇ψ|−2∇ψ ·∇.

Notice that the peak of the (perpendicular) plasma pressure no longer cor-

responds to a null in the plasma current. Notice also that, when P⊥ ' P||,
the plasma current outside the pressure peak is reduced relative to the

current that would occur with the same level of isotropic pressure.



Model Profiles
In our previous reconstructions of LDX equilibria, we used the model (isotropic)

pressure profile

p(ψ) = G(ψ) ≡ p0

(
ψ − ψfcoil

ψ0 − ψfcoil

)α (
ψ

ψ0

)4g

, (10)

where α = 4g(|ψfcoil/ψ0| − 1) and ψ0 is the value of the poloidal flux

at the pressure peak. The pressure profile vanishes at the inner (f-coil)

limiter, but it does not vanish at the outer plasma limiter. The variation of G
with ψ is

dG

dψ
= 4g G(ψ)

(ψf/ψ0)− (ψf/ψ)

ψ − ψf
.

For anisotropic pressure, the equilibrium pressure profile can be character-

ized by a function of two variable, (ψ, B). The simplest models define the
pressure as the product of two functions, P⊥ = G(ψ)H(B(ψ, χ)), where
H(B) is a function of the magnetic field strength. As B increases toward

the dipole’s poles, H decreases.



Anisotropic Form (I)
Since B(ψ, χ) is not a flux function, the operator ∂/∂ψ acts on bothG(ψ)
and H(B). The plasma current is expressed as

Jφ = −2πr

(

H
dG

dψ
+ GB

dH

dB

∂ lnB

∂ψ

)

− 2πr(P||(ψ, B)−GH)
∂ lnB

∂ψ
.

(11)

In these reconstructions, we use the much simpler and easier-to-use model

employed by Krasheninnikov (2000) and by Simakov (2000). Define the

ratio, H(B) ≡ (B0/B)2p = (B(ψ, χ = 0)/B(ψ, χ))2p, to be the

ratio of the strength of the field at the equator, B0, to the strength at

a location χ, or s, from the equator. H(B) has a value of unity at the
equator that decreases monotonically along the field line towards the float-

ing coil. The pressure always peaks on the equatorial plane, even when
the ECRH resonance is located near the poles. The parallel pressure is

P|| = P⊥/(1 + 2p). When p > 0, the plasma is anisotropic.



Anisotropic Form (II)
The gradient of the pressure is

∂P⊥
∂ψ

= H
dG

dψ
+ 2pGH

D

Dψ
(lnB0 − lnB)

A convenient expression for the plasma current is

Jφ = −2πrH
dG

dψ
− 2πrGH

2p

1 + 2p

[

2(1 + p)
D ln(B0/B)

Dψ
−

∂ lnB0

∂ψ

]

(12)

where ∂ lnB0/∂ψ is a flux function but D lnB/Dψ and D ln(B0/B)/Dψ

are not.

The pressure and current profiles of anisotropic equilibria are illustrated

in the next figures when the pressure profile is modeled using the sim-

ple model of Connor and Hastie (1976). Relative to isotropic plasmas,

anisotropic pressure generates a smaller equilibrium current for the same

value of peak pressure.



Anisotropy Significantly Changes 
Pressure Profile Height
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Figure 1: Example anisotropic pressure profiles with G(ψ) defined with g = 4 and ψ0

located at r = 0.77 m. The anisotropy parameter was p = 0, 1, 2, and 3.

5 Summary

The pressure and current profiles of anisotropic equilibria are illustrated when the pressure
profile is modeled using the simple model of Connor and Hastie [4]. Relative to isotropic
plasmas, anisotropic pressure generates a smaller equilibrium current for the same value
of peak pressure.
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Plasma Current Decreases for 
Anisotropic Pressure
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Figure 2: Plasma current profiles for the four pressure profiles shown in Fig. 1.
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Figure 3: The equatorial plasma current profile when p = 0 (blue) and p = 2.
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Mutual Inductance 
between Floating Coil 

and Plasma

Calculation of Mutual Inductance between F-Coil and
Plasma

M. E. Mauel
Dept. of Applied Physics and Applied Mathematics

Columbia University
New York, NY 10027 USA

<mailto:mauel@columbia.edu>

April 17, 2005

Abstract. The mutual inductance between the LDX plasma
and the F-coil is calculated for two equilibria. The mutual in-
ductance depends on radius as expected and is comparable to
the values estimated with the Filament Code.

The mutual inductance between the plasma and the floating coil is calculated by
performing the following sum and integral:

MfpIp =
∫ ∫ N∑

i=1

Mi(x, z)J(x, z) dxdz (1)

where Mi(x, z) is the mutual inductance between a plasma current element at J(x, z) and
the ith turn of the F-coil. Ip is the total plasma current. Fig. 1 shows the variation of
total mutual inductance,

∑
i Mi(x, 0), for a plasma current filament at radius x.

Given the F-coil self-inductance, Lf , the change in the F-coil current is given by the
equation for flux conservation:

∆If = −MfpIp/Lf (2)

The change in the F-coil current is very small for typical LDX discharges (∆If/If ≈
0.1%). For this reason, once the mutual between the plasma and F-coil is calculated, then
it is relatively easy to include the effects of changing F-coil current during equilibrium
reconstruction. The steps are:

1. Estimate the F-coil current change using, for example, the Filament Code;

2. Subtract the F-coil contribution from each magnetic diagnostic;

1
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m

150

175

200

225

250

275

Mutual between Plasma & F!Coil !ΜH"

Figure 1: The mutual inductance between the F-coil and an equatorial plasma filament
at radius x.

Table 1: Summary equilibria examples.

Example1 Example2
Plasma Current (kA) 2.97 2.97
Change in F-Coil Current (kA·turns) -0.61 -0.76
Mfp (µH) 110 138
Current Centroid (m) 1.28 0.96
R(Pmax) (m) 0.797 0.797
Plasma Volume (m3) 30.6 30.3
Stored Energy (J) 258 368
〈β〉 0.370 0.088
βmax 0.95 0.62
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Figure 2: Plots of the log10 P for the two example equilibria. Example 1 is on the left and
Example 2 is on the right. The equilibria are shown with the “dots”. A thin line scaling
with radius as R−20/3 is shown for reference.

3

∆If ≈ - Ip/4



X-Ray Measurement of Fast 
Electrons Constrain Equilibrium

VisibleX-Ray
E > 40 keV

Fast Electrons: Anisotropic at ECRH Resonance

2.45 GHz Only



X-Ray Measurement of Fast 
Electrons Constrain Equilibrium

6.4 GHz Only
50710012
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6.4 GHz Resonance



Magnetic Measurements Only 
Weakly Constrain Profiles 

P
!

/P||
5
3
1

2

3

0.70 0.75 0.80 0.85

g

Rpeak (m) 2.45 GHz

4

0.65

6.4 GHz

50701011, 50701012



Best Fit Equilibrium for (2.45 GHz) 
Single-Frequency Heating
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X-Ray Measurement of Fast 
Electrons Constrain Equilibrium

6.4 GHz Only
50710012
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Abel Inversion “Consistent” 
with Reconstruction
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(c) Equatorial Profiles
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“Best Fit” Anisotropic 
Equilibrium
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Out[352]//TableForm=

Parameter Fit Value Fit Value Fit Value

Χ2 15.1592 14.3351 14.5942

Ip 3817.59 3516.76 3356.57

∆If #941.977 #794.85 #738.437
p 0 1 2

P!perp"#P!$$" 1 3 5

R!peak" 0.716667 0.716667 0.716667

Γ 1.66667 2.40741 2.40741

Γ#!5#3" 1. 1.44444 1.44444

Press!Rpeak" 112.614 459.7 594.78

J Centroid 1.1976 1.19639 1.23389

Moment !A m2" 6152.34 5207.42 5251.09

Max Perp Β 0.137991 0.206572 0.267272

Perp Β!Rpeak" 0.0218796 0.0893144 0.115559

Avg Perp Β 0.070594 0.0354153 0.0383653

Plasma Volume 28.7984 28.7984 28.7984

Energy !J" 297.15 329.847 306.234

E#Ip !J#kA" 77.8369 93.7928 91.2342

“Record” High Beta Discharge

High β!

Steep 
Gradient!



χ2 Summary
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χ2  is lowest for 2.45 GHz only.



Measuring Multipoles
• The present LDX magnetic diagnostics are relatively far 

from the plasma diamagnetic current and from the 
floating-coil.

• In this case, equilibrium reconstruction is equivalent to 
least-squares fit between magnetic diagnostics and 
multipole moments. 

• The plasma’s dipole moment and the quadrupole 
moment formed from the inductively-reduced f-coil 
current dominate the far-field.



Examples
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Figure 1: Contours of χ2 for Shot 50318014 (t = 3 s) computed as the current within two
fixed filaments are varied. The blue line represents the combination of currents producing
a constant total dipole moment, Mtot ∝ 2960 A·m2. χ2 is essentially constant along this
line and increases rapidly to either side.

3 Two Plasma Filaments

Consider two co-axial plasma current rings with fixed radii and located on the equatorial
plane of the floating coil. How much current flows in each filament that minimizes the
normalized mean square difference between the measurements, mi, and the equivalent
value created by the filaments, vi?

Each measurement is assumed to have an random uncertainly characterized by an
“absolute” error and a “relative” error. The total measure of the uncertainty is ±σi. The
best fit between the fields generated by the filaments and the measurements minimize the
function χ2 =

∑
i(mi− vi)2/σ2

i . For these examples, the relative error was ±5% , and the
absolute errors were ±0.02 mV·s and ±0.2 G.

For two plasma filaments, χ2 is a function of the two unknown currents. The equivalent
detected value created by the currents is given by vi =

∑
p Mi,pIp + Mi,fδIf . δIf is the

change in the floating coil current due to its flux linkage to the plasma currents, LfδIf =

3

0.8 0.85 0.9 0.95 1 1.05 1.1

R

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

w

Χ2 Contours

Figure 3: Contours of χ2 for Shot 50318014 (t = 3 s) computed for a co-axial current ring
with elliptical cross-section. For Rc ∼ 0.97 m, the plasma dipole moment is equivalent to
the best fit values computed in the previous section. The LDX magnetic diagnostics are
unable to determine the width of the current channel.

5 Model Plasma Pressure Profiles

Physics-based models for the plasma current can also be fit to the magnetic diagnostics.
If assumptions associated with the model can be supported through independent mea-
surements or other considerations, then these models can be used to compute the plasma
pressure profile and integrals of the profile, like the total stored energy.

For example, one physics-based model for the plasma pressure is

P (ψ) =
a

δV γ
(ψmax − ψ)b (ψ − ψmin)c . (1)

In this model, P vanishes at both the inner and outer limiters. The differential volume of
a flux tube per unit flux is δV =

∮
ds/B. There are effectively three unknown parameters:

the total plasma current, the location of the pressure peak, the adiabatic factor, γ, and
the parameter c. If c > 1, then the plasma current also vanishes at inside limiter. For the
calculations that follow, c = 1.1.
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Contours of equal χ2 show a minimum for a given 
plasma dipole moment.
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Summary
• Equilibrium reconstruction demonstrate that plasmas with 

high local beta are created in LDX

• X-ray images show the fast electrons to be localized at 
the ECRH resonance. The fast electrons are anisotropic.

• Anisotropic equilibria are well fit to magnetic 
measurements. The equilibria have pressure gradients 
that exceed the usual MHD instability limits.

• New magnetic diagnostics will be installed closer to the 
plasma to distinguish more details of the pressure profile.


