

Low Frequency Instability in the Levitated Dipole Experiment

Jay Kesner, A. Boxer, J. Ellsworth, I. Karim *MIT*

D.T. Garnier, A. Hansen, M.E. Mauel, E.E. Ortiz Columbia University

Paper BP1.00031 Presented at the ICC Meeting, Austin, February 14, 2006 **Columbia University**

Plasma that is heated by ECRH can be subject to instability that feeds on the free energy of either the hot component or the thermal plasma component. Confinement in a closed field line system such as a levitated dipole imposes particular restrictions on collective effects; notably the plasma compressibility will play an important stabilizing role. Theoretical considerations of thermal plasma driven instability indicate the possibility of MHD-like behavior of the background plasma, including convective cells, drift frequency (entropy mode) fluctuations and ECRH-accessibility related "breather" modes. In experiments in LDX (in the supported mode of operation) we create a two- component plasma in which a thermal species contains most of the density and an energetic electron species contains most of the plasma stored energy. In addition to high frequency fluctuations reported elsewhere [Garnier et al, PoP (2005)] we observe low frequency fluctuations that presumably are driven by the thermal species. The observed frequencies include modes in the kHz and 100 Hz range. A variation of the frequency spectrum with neutral gas pressure indicates a dependence on the imposed plasma profiles and possibly on the relative temperature and density gradients.

LDX Experiment Cross-Section

- Superconducting dipole magnet I_c > 1 MA
- Large 5 m diameter vacuum vessel
- Expansive diagnostic access
- Dipole supported by three thin spokes
- Two ECRH heating frequencies provide up to 5 kW power

The Levitated Dipole Experiment (LDX)

ECRH sustains hot electron and thermal species

- n~n_{eb}: n_e dominated by background thermal plasma
 Can be unstable to low frequency modes: ω ~ ω_d ~ ω_{*}
 Can be unstable to MHD
- $\beta \sim \beta_{eh}$: Beta is dominated by hot electrons
 - Stability of hot electron species requires background density
 - > Can be unstable to high frequency modes: $\omega \sim \omega_{dh}$
- In future levitated high density experiments thermal species will dominate both β and n_e

ECRH: EBT and Dipole

- Similar to EBT (bumpy torus):
 - MHD-like background mode and kinetic hot electron interchange can be present.
 - EBT symbiosis: Background stabilized by diamagnetic well of hot electrons. Hot electron stability requires n_{eh}/n_b< N_{crit}~ 0.2
 - EBS was "long-thin" mirror, I.e. no significant compressibility
- Dipole: background plasma stability does not require hot electrons
 - > MHD mode stabilized by compressibility
 - MHD instability leads to convective motion of background
 - tends to create n_{core}/n_{edge}~V_{edge}/V_{core} & p_{core}/p_{edge}~(V_{edge}/V_{core})^γ, i.e. to centrally peaked n_b & p.

> LDX shaping (Helmholtz) coils permit variation of V_{edge}/V_{core}

Properties of hot and thermal species

Hot electron species: E_{eh}>50KeV

Hot electron interchange mode: f ~ 1-100 MHz

- Free energy of hot electron density gradient
- Loss cone modes: unstable whistler modes: f >2 GHz
 - Hot electron loss cone and anisotropy
- Background plasma: Te, Ti ~10-50 eV
 - > MHD-like modes; f ~ 20-100 kHz
 - Background plasma pressure gradient
 - Drift frequency (entropy) modes: f ~1-5 KHz
 - Background plasma density and temperature gradients
- ECRH accessibility oscillations: f~50-200 Hz

Some theoretical results: Maxwellian Plasma

Bad Curvature region (between pressure peak & vacuum vessel)

- MHD: stable to interchange when δ(pV^γ)>0, V=∫dl/B p_{core}/p_{edge}<(V_{edge}/V_{core})^γ~10³: want large vacuum chamber
 MHD equilibrium from field bending and not grad-B term -> β~1
 Unstable interchange modes evolve into convective cells
- Ballooning modes stable when interchange stable
- Weak resistive mode at high β ($\gamma \gamma_{res}$ but no $\gamma \gamma_{res}^{1/3} \gamma_A^{1/3}$ mode)
- Drift frequency modes: electrostatic "entropy" mode
 > unstable when η< 2/3
- Good curvature region (between floating coil and pressure peak)
 Entropy mode can be unstable when grad(n_e)<0

Summary of Collective Modes in Dipole

- Hot electron driven modes
 - Hot electron interchange (HEI): ω~ω_{dh}, f~1-50 MHz Ref: Garnier et al., to be published in PoP 2006.
 - > Whistler (loss cone) modes; $\omega \sim \omega_{ce}$, f~1-30 GHz
- Background plasma driven
 - > Entropy mode: $\omega \sim \omega_{\star_b}$, $\omega \sim \omega_{db}$, f~1-10 KHz
 - Background MHD: γ~γ_{MHD-b}, f~50-100 KHz
 [Krasheninnikova, Catto, PoP 12 (2005) 32101].
 - Non-linear development can form convective cells [Pastukhov and Chudin, Plasma Physics Reports 27 (2001) 907.]
- ECRH "breather mode" possible
 - > Over-dense cutoff of heating: f~L²/D, f~100-300 Hz
 - > Would prevent large density grad and raise η

Stability of background plasma gives us information on thermal plasma dipole confinement

LDX Parameters in high- β Regime

ECH creates a hot electron component within a background plasma.

Hot Electron Plasma

- Density: n_{eh} << n_{eb}
- Temperature: T_{eh}>>T_{eb}
 → Hot electron energy > 50 keV, ω_{dh}~1-10 MHz
- Pressure
 - > Core 200 Pa.
 - $\succ \beta_{max} \sim 20\%$
- Confinement
 - Stored energy ~ 200 J,
 - " $\tau_{\rm E}$ " ~ 50 msec.

Background Plasma

- Density
 - Core: <nl>/L~1-5 x 10¹⁶ m⁻³
 - n_{cutoff}(2.45 GHz)= 7.6e16 m⁻³
 @ R₀=0.78 m
 - n_{cutoff}(6.4 GHz) = 5.2e17 m⁻³
 @ R₀=0.60 m
 - Edge density 1-2 x 10¹⁶ m⁻³
- Temperature:
 - Edge temperature ~10-20 eV, ω_{*d}~1-10 KHz
- Pressure
 Edge 0.01
 - Edge 0.01 Pa P_{Core}/P_{edge}~10000

Plasma can be unstable to drift frequency mode

Entropy mode is a drift frequency, flute mode.
 Dispersion Relation:

$$\hat{\omega}^2 \left(\frac{d\ln p}{d\ln V} + \frac{5}{3}\right) + \frac{5\hat{\omega}}{3} \left(\frac{T_e}{T_i} - 1\right) \left(\frac{d\ln p/d\ln V}{1+\eta} + 1\right) + \frac{5}{9} \frac{T_e}{T_i} \left(\frac{d\ln p}{d\ln V} \frac{3\eta - 7}{\eta + 1} - 5\right) = 0$$
$$\hat{\omega} = \omega/\langle \omega_{di} \rangle, \ d = -\frac{d\ln p}{d\ln V} = (1+\eta) \frac{\omega_{*i}}{\langle \omega_{di} \rangle}, \quad \eta = \frac{d\ln T}{d\ln n}$$

Properties of entropy mode

- Frequency $\omega \sim \omega_{*i} \sim \omega_{di}$
 - $\succ \omega$ increases with ∇n_e and T_{ib}
 - > Plasma beyond pressure peak stable for η > 2/3
 - Stable at d=5/3, η=2/3
 - Instability will move plasma towards marginal d=5/3, η=2/3, i.e. tends to steepen density gradient
- Stability in good curvature region depends on sign of ∇n_e
- Mode appears at both high and low collisionality [2]
- Electrostatic "entropy" mode persists at high β [3]
- But linear theory is not always predictive of real plasmas

Some references:

- 1. Kesner, PoP 7, (2000) 3837.
- 2. Kesner, Hastie, Phys Plasma 9, (2002), 4414
- 3. Simakov, Catto et al, PoP 9, (2002), 201

Convective Cells in Dipole

- Convective cells can form in closed-field-line topology.
 Field lines charge up -> ψ-φ convective flows (r-z in z-pinch)
 - > 2-D nonlinear cascade leads to large scale vortices
 - Cells circulate particles between core and edge
 - No energy flow when pV^{γ} =constant, (i.e. $p'=p'_{crit}$).
 - When p'>p'_{crit} cells get non-local energy transport. Stiff limit: only sufficient energy transport to maintain p' ≥p'_{crit}.
 - Non-linear calculations use reduced MHD (Pastukhov et al) or PIC (Tonge, Dawson et al) in hard core z-pinch

Reduced MHD: Pastukhov, Chudin, Pl Physics 27 (2001) 907.

PIC: Tonge, Leboeuf, Huang, Dawson, 10 Phys PI. (2003) 3475.

Low frequency turbulence (f< 6 KHz) sometimes seen

- Often not observed
- On 5/13/05 had well conditioned vacuum chamber
 - Well defined modes (f~3-5 kHz) observed for 4e-7< p_0 <1e-6 torr
 - Turbulent spectrum (f~1-3 KHz) observed for 1e-6< p₀<4e-6 torr
 - Gas control experiments
 - Gas off: mode frequency rises and mode weakens.
 - Gas puff: mode frequency drops and forms broad low frequency spectrum

5/13/05: low base pressure in chamber

Frequency (kHz)

50513031 higher base pressure $p_0(t < 4s) = 4.4e-7$ torr.

50513037 lower base pressure $p_0(t < 3s) = 3.9e-7$ torr.

Compare Discharges 50513031 and 037

Compare two discharges from 5/13/05

- 50513031
- p₀(t<4s)=4.4e-7 torr, Turbulence (τ_{cor}~12 μs) & *f*=3.2 kHz
- gas off at t=4 s raises f and weakens mode
 → β rises (from pFlux5: diamagnetism)
 - \rightarrow n_{eb} falls (from photodiode)

- 50513037
- p₀(t<3s)=3.9e-7 torr,
 Turbulence & *f*=3.75 kHz
- gas puff at t=3 s lowers *f*.
- Density rises factor 3 on both core interferometer and edge probe
 - Indicates increase in η=dInT/dIn

Solution No measure of rotation frequency. Is observed frequency affected by doppler shift of rotating plasma? No measure of k_{\perp} spectrum as yet

Two point spectral density, Mirnov coils

Spectral density identifies k_{\parallel} for observed frequencies

Ref: Beall, Kim, Powers, J App Phys 6 (82) 3933.

50513031

50513037

Discharge 50513037: gas puff at t=3 s

- Gas puff at t=3 s leads to:
 - → fast rise in n_{eb}
 → Slow fall in β (& n_{eh}) due to increased pitch angle scatter
- Density rises factor 3 on both core interferometer and edge probe
 - → Indicates increase in η =dInT/dIn
- In future levitated operation will eliminate pitch angle scatter loss. Gas puffing should provide dense plasmas

Entropy mode ? mode frequency rises with ω_{\star}

Edge gas fueling will decrease T_i and increase edge fueling relative to central fueling (from recycle off f-coil). Lower $P_{0edge} \rightarrow high \nabla n_e$

p₀₋₃₁ < p₀₋₃₇

 From interferometer (<n_el>) and edge probe observe higher neutral pressure

-> lower $\omega_{*i} \propto T_i \nabla n_i / n_i \& \omega_{di} \propto T_i$ • 50513031:

- p₀(t<4s)=4.4e-7 torr, *f*=3.1 kHz

- gas off at t=4 s raises f.

• 50513037:

- p₀(t<3s)=3.9e-7 torr, *f*=3.75 kHz
- gas puff at t=3 s lowers f.

-Gas puff will also raise η and can stabilize entropy mode (3 < t <5s).

50513031 high base pressure 50513037 lower base pressure $p_0(t=4s)=4.4e-7$ torr $p_0(t=3s)=3.9e-7$ torr gas off at t=4s puff at t=3s 6 5 requency (kHz) 2 1 2 3 5 5

Gas puff experiment

Gas puff at t=3 s can raise η and stabilize mode.

Instability absent at t~4s •Theory requires η >2/3 for stability for entropy mode

• At later time (t > 5 s) broadband fluctuations appear with 1 < f < 3KHz (at higher density)

 During afterglow (t > 6 s) background plasma reduced, profiles relax and mode disappears.

Power Spectra for 1-10 kHz shows f⁻³ falloff

During shaping experiment frequency falls. May indicate flattening of density profile (higher ω_*)

- Helmholtz coils create separatrix and reduce plasma size \geq Diverted plasma may have reduced density gradient and $\omega \propto \omega_{*i} \propto T_i \nabla n_i / n_i$
- Frequency appears to be dependent on plasma size
 - \geq Frequency higher in smaller plasma with larger gradients
- Mode not present when for $I_{H}=0$ in these discharges.
- Observed at edge (probes) & core (Mirnov coils, photodiode array)

Plasma shaping experiments: 55 MHZ MHD mode appears

- 55 KHz "MHD" mode appears for both large and smaller plasma size. Seen on photodiode array
- Power spectrum of low frequency spectra similar for small and large plasmas: $d \ln P_I / df \approx -3$

R=2.5m (I_H =0.25 kA 41210025)

R=1.6m (I_H =1.5 kA 41210023)

Unresolved issues

- Doppler shift from plasma rotation not yet measured
- Wave number, k_{\parallel} , spectrum not measured

ECRH accessibility mode ?

- 220 Hz mode peaked at 6.4 resonance.
 - Localized to core. Closeness to-coil increases frequency of density feedback
- 100 Hz mode peaked at 2.45 resonance
- Both modes weaken for single frequency heating
 - Indicates interaction of RF diffusion with density profile.

F-Coll

Conclusions: thermal LDX plasma

- ECRF heated plasmas yield valuable information on background (thermal) plasma
 - Low frequency turbulence can be present
 - May evolve from entropy mode. Need info on k_{\perp}
 - MHD activity can be present, presumably forming convective cells
 - 2-D structures not yet measured
- At higher density background plasma more strongly coupled to thermal plasma

LDX Parameters in "High beta" Regime

- Density: n_{eh} << n_{eb}
 - Core line average density 1-5 x 10¹⁶ m⁻³
 - Edge density 1-2 x 10¹⁶ m⁻³
 - n_{cutoff}(2.45 GHz)= 7.6e16 m⁻³ @ R₀=0.78 m
 - n_{cutoff}(6.4 GHz) = 5.2e17 m⁻³ @ R₀=0.60 m
- Temperature: T_{eh}>>T_{eb}
 - > Hot-electron energy > 50 keV, ω_{dh} ~1-10 MHz

> Edge temperature ~10-20 eV, ω_{*b} ~1-10 KHz

- Pressure
 - Edge 0.01 Pa, Core 200 Pa. --> Ratio ~ 10000
 - > Beta (local maximum) ~ 20%
- Confinement
 - > Stored energy ~ 200 J, " τ_E " ~ 50 msec.