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ABSTRACT

Plasma that is heated by ECRH can be subject to instability that feeds on
the free energy of either the hot component or the thermal plasma
component. Confinement in a closed field line system such as a levitated
dipole imposes particular restrictions on collective effects; notably the
plasma compressibility will play an important stabilizing role.
Theoretical considerations of thermal plasma driven instability indicate
the possibility of MHD-like behavior of the background plasma,
including convective cells, drift frequency (entropy mode) fluctuations
and ECRH-accessibility related "breather" modes. In experiments in
LDX (in the supported mode of operation) we create a two- component
plasma in which a thermal species contains most of the density and an
energetic electron species contains most of the plasma stored energy. In
addition to high frequency fluctuations reported elsewhere [Garnier et al,
PoP (2005)] we observe low frequency fluctuations that presumably are
driven by the thermal species. The observed frequencies include modes
in the kHz and 100 Hz range. A variation of the frequency spectrum with
neutral gas pressure indicates a dependence on the imposed plasma
profiles and possibly on the relative temperature and density gradients.
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LDX Experiment Cross-Section
 Superconducting

dipole magnet Ic > 1
MA

 Large 5 m diameter
vacuum vessel

 Expansive diagnostic
access

 Dipole supported by
three thin spokes

 Two ECRH heating
frequencies provide
up to 5 kW power
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The Levitated Dipole Experiment (LDX)
Image A
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ECRH sustains hot electron and thermal species
 n~neb: ne dominated by background thermal plasma

Can be unstable to low frequency modes: ω ~ ωd ~ ω*

Can be unstable to MHD
 β∼βeh: Beta is dominated by hot electrons

Stability of hot electron species requires background
density

Can be unstable to high frequency modes: ω ~ ωdh

In future levitated high density experiments thermal
species will dominate both β and ne
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ECRH: EBT and Dipole
 Similar to EBT (bumpy torus):

MHD-like background mode and kinetic hot electron
interchange can be present.

EBT symbiosis: Background stabilized by diamagnetic well
of hot electrons. Hot electron stability requires neh/nb< Ncrit~
0.2
 EBS was “long-thin” mirror, I.e. no significant compressibility

 Dipole: background plasma stability does not require
hot electrons
MHD mode stabilized by compressibility
MHD instability leads to convective motion of background

 tends to create ncore/nedge~Vedge/Vcore & pcore/pedge~(Vedge/Vcore)γ, i.e. to
centrally peaked nb & p.

LDX shaping (Helmholtz) coils permit variation of Vedge/Vcore
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Properties of hot and thermal species
 Hot electron species: Eeh>50KeV

 Hot electron interchange mode: f ~ 1-100 MHz

 Free energy of hot electron density gradient

 Loss cone modes: unstable whistler modes: f >2 GHz

 Hot electron loss cone and anisotropy

 Background plasma: Te, Ti ~10-50 eV

 MHD-like modes; f ~ 20-100 kHz

 Background plasma pressure gradient

 Drift frequency (entropy) modes: f ~1-5 KHz

 Background plasma density and temperature gradients

 ECRH accessibility oscillations: f~50-200 Hz
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Some theoretical results: Maxwellian Plasma
Bad Curvature region (between pressure peak & vacuum vessel)

 MHD: stable to interchange when δ(pVγ)>0,  
pcore/pedge<(Vedge/Vcore)γ∼103 : want large vacuum chamber
 MHD equilibrium from field bending and not grad-B term -> β∼1
 Unstable interchange modes evolve into convective cells

 Ballooning modes stable when interchange stable
 Weak resistive mode at high β (γ∼γres

  but no γ∼γres
1/3 γA

1/3 mode)
 Drift frequency modes: electrostatic “entropy” mode

 unstable when η< 2/3

 Good curvature region (between floating coil and pressure peak)
 Entropy mode can be unstable when grad(ne)<0

€ 

V = dl /B∫
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Summary of Collective Modes in Dipole
 Hot electron driven modes

 Hot electron interchange (HEI): ω~ωdh, f~1-50 MHz
Ref: Garnier et al., to be published in PoP 2006.

 Whistler (loss cone) modes; ω~ωce, f~1-30 GHz
 Background plasma driven

 Entropy mode: ω~ω*b, ω~ωdb, f~1-10 KHz
 Background MHD: γ~γMHD-b, f~50-100 KHz

[Krasheninnikova, Catto, PoP 12 (2005) 32101].
 Non-linear development can form convective cells
[Pastukhov and Chudin, Plasma Physics Reports 27 (2001) 907.]

 ECRH “breather mode” possible
 Over-dense cutoff of heating: f~L2/D, f~100-300 Hz
 Would prevent large density grad and raise η

Stability of background plasma gives us information on
thermal plasma dipole confinement
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LDX Parameters in high-β Regime

Hot Electron Plasma
• Density:  neh<< neb
 Temperature: Teh>>Teb

 Hot electron energy >
50 keV, ωdh~1-10 MHz

 Pressure
 Core 200 Pa.
 βmax ~ 20%

 Confinement
 Stored energy ~ 200 J,
“τE” ~ 50 msec.

Background Plasma
 Density

  Core: <nl>/L~1-5 x 1016 m-3

 ncutoff(2.45 GHz)= 7.6e16 m-3

@ R0=0.78 m
 ncutoff(6.4 GHz)  = 5.2e17 m-3

@ R0=0.60 m
 Edge density 1-2 x 1016 m-3

 Temperature:
 Edge temperature ~10-20 eV,
ω*d ~1-10 KHz

 Pressure
 Edge 0.01 Pa
PCore/Pedge~10000

ECH creates a hot electron component within a background
plasma.
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Plasma can be unstable to drift frequency mode
• Entropy mode is a drift frequency, flute mode.
   Dispersion  Relation:

Real frequency is  introduced for 

€ 

Te≠Ti

Te/Ti

€ 

ω

ωdi
Im(ω/ωdi)

Re(ω/ωdi)

d=1.3, η=0.1, kρ= 0
€ 

ˆ ω =ω / ωdi ,

€ 

d =−d ln p
d lnV

= (1+η)
ω∗i
ωdi

,

€ 

η =
d lnT
d ln n
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Properties of entropy mode

Some references:
1. Kesner, PoP 7, (2000) 3837.
2. Kesner, Hastie, Phys Plasma 9, (2002), 4414
3. Simakov, Catto et al, PoP 9, (2002), 201

 Frequency ω ~ ω*i ~ ωdi

 ω increases with        and Tib
 Plasma beyond pressure peak stable for η> 2/3

 Stable at d=5/3, η=2/3
 Instability will move plasma towards marginal d=5/3, η=2/3, i.e. tends to

steepen density gradient

 Stability in good curvature region depends on sign of
 Mode appears at both high and low collisionality [2]
 Electrostatic “entropy” mode persists at high β [3]

 But linear theory is not always predictive of real plasmas

€ 

∇ne

€ 

∇ne

€ 

∇ne
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Convective Cells in Dipole
 Convective cells can form in closed-field-line topology.

Field lines charge up -> ψ−φ convective flows (r-z in z-pinch)
2-D nonlinear cascade leads to large scale vortices
Cells circulate particles between core and edge

 No energy flow when pVγ=constant, (i.e. p’=p’crit).
 When p’>p’crit cells get non-local energy transport. Stiff limit: only

sufficient energy transport to maintain p’ tp’crit.
 Non-linear calculations use reduced MHD (Pastukhov et al) or PIC

(Tonge, Dawson et al) in hard core z-pinch

coil

φ

R

Reduced MHD: Pastukhov, Chudin, Pl Physics
27 (2001) 907.

PIC: Tonge, Leboeuf, Huang, Dawson, 10 Phys
Pl. (2003) 3475.

wall
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 Often not observed
 On 5/13/05 had well conditioned vacuum chamber

 Well defined modes (f~3-5 kHz) observed for 4e-7< p0<1e-6 torr
 Turbulent spectrum (f~1-3 KHz) observed for 1e-6< p0<4e-6 torr

Gas control experiments
 Gas off: mode frequency rises and mode weakens.
 Gas puff: mode frequency drops and forms broad low frequency

spectrum

Low frequency turbulence (f< 6 KHz) sometimes seen

Gas puffGas off

50513031                                                          50513037
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5/13/05: low base pressure in chamber

RF
off

gas
puff

50513031 higher base pressure                                       50513037 lower base pressure
p0(t< 4s)=4.4e-7 torr.                                                         p0(t< 3s)=3.9e-7 torr.

Puff at t=3sgas off at
 t=4s
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Compare Discharges 50513031and 037

Gas feed
 off

Gas 
puff
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Compare two discharges from 5/13/05
 50513031
 p0(t<4s)=4.4e-7 torr,

Turbulence (τcor~12 µs)
& f=3.2 kHz

 gas off at t=4 s raises f
and weakens mode
β rises (from pFlux5:

diamagnetism)
  neb falls (from photodiode)

 50513037
 p0(t<3s)=3.9e-7 torr,

 Turbulence  & f=3.75 kHz

 gas puff at t=3 s lowers  f.
  Density rises factor 3 on

both core    interferometer
and edge probe
  Indicates increase in
η=dlnT/dln

 No measure of rotation frequency. Is observed frequency
affected by doppler shift of rotating plasma?
 No measure of     spectrum as yet

€ 

k⊥
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Two point spectral density, Mirnov coils

50513031                                                       50513037

Spectral density identifies      for observed frequencies

Ref: Beall, Kim, Powers, J App Phys 6 (82) 3933.
€ 

k⊥
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• Gas puff at t=3 s leads to:

  fast rise in neb
 Slow fall in β (& neh) due to
increased pitch angle scatter

• Density rises factor 3 on both core
interferometer and edge probe

 Indicates increase in η=dlnT/dln

• In future levitated operation will
eliminate pitch angle scatter loss. Gas
puffing should provide dense plasmas

Discharge 50513037: gas puff at t=3 s
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• From interferometer (<nel>)
and edge probe observe higher
neutral pressure
 -> lower                      &• 50513031:
 - p0(t<4s)=4.4e-7 torr, f=3.1 kHz
 - gas off at t=4 s raises f.

• 50513037:
- p0(t<3s)=3.9e-7 torr, f=3.75 kHz
- gas puff at t=3 s lowers  f.
-Gas puff will also raise η and
can stabilize entropy mode
 (3 < t <5s).

Entropy mode ? mode frequency rises with ω*
50513031 high base pressure     50513037 lower base pressure
p0(t=4s)=4.4e-7 torr                     p0(t=3s)=3.9e-7 torr
gas off at t=4s                              puff at t=3s

RF
off

gas
puff€ 

ω*i∝Ti∇ni /ni

Edge gas fueling will decrease Ti
and increase edge fueling relative
to  central fueling (from recycle
off f-coil). Lower P0edge -> higher
 p0-31 < p0-37

€ 

∇ne

€ 

ωdi∝Ti
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Gas puff experiment

• Gas puff at t=3 s can raise η
 and stabilize mode.
        Instability absent at t~4s

•Theory requires η>2/3 for
stability for entropy mode

• At later time (t > 5 s) broadband
fluctuations appear with 1< f < 3
KHz (at higher density)

• During afterglow (t > 6 s)
background plasma reduced,
profiles relax and mode
disappears.

Photodiode-9 (50513037)

RF
off

t=2.9                                                         t=5.9

10 kHz

gas
puff
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Power Spectra for 1-10 kHz shows f-3 falloff

Power spectrum:  t=2.9 s                              t=5.9s

• Power spectrum                , a~3

• High frequency features may be back-
ground MHD
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During shaping experiment frequency falls. May indicate
flattening of density profile (higher ω*)

 Helmholtz coils create separatrix and reduce plasma size
Diverted plasma may have reduced density gradient and

 Frequency appears to be dependent on plasma size
Frequency higher in smaller plasma with larger gradients• Mode not present when for IH=0 in these discharges.• Observed at edge (probes) & core (Mirnov coils, photodiode array)

R=2.5m (IH =0.25 kA 41210025)                       R=1.6m (IH =1.5 kA 41210023)

€ 

ω∝ω
∗i ∝Ti∇ni /ni



Feb. 15, 2005 24

Plasma shaping experiments: 55 MHZ MHD mode appears

 55 KHz “MHD” mode appears for both large and smaller plasma
size. Seen on photodiode array

 Power spectrum of low frequency spectra similar for small and large
plasmas:

R=2.5m (IH =0.25 kA 41210025)                  R=1.6m (IH =1.5 kA 41210023)
€ 

d lnPI /df ≈ −3
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Unresolved issues
 Doppler shift from plasma rotation not yet

measured
 Wave number,    , spectrum not measured

€ 

k⊥
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ECRH accessibility mode ?
 220 Hz mode peaked at 6.4 resonance.

 Localized to core. Closeness to-coil increases
frequency of density feedback

 100 Hz mode peaked at 2.45 resonance
 Both modes weaken for single frequency heating

 Indicates interaction of RF diffusion with  density
profile.

time (s)

       Collimated photodiode:  Shot  50701009
        view # 9, R=65 cm                       #10, R=80 cm                                 #11 R=95 cm
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Conclusions: thermal LDX plasma
 ECRF heated plasmas yield valuable information

on background (thermal) plasma
Low frequency turbulence can be present

 May evolve from entropy mode. Need info on
MHD activity can be present, presumably forming

convective cells
 2-D structures not yet measured

 At higher density background plasma more
strongly coupled to thermal plasma

€ 

k⊥
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 Density:  neh<< neb
Core line average density 1-5 x 1016 m-3

Edge density 1-2 x 1016 m-3

 ncutoff(2.45 GHz)= 7.6e16 m-3  @ R0=0.78 m
 ncutoff(6.4 GHz)  = 5.2e17 m-3 @ R0=0.60 m

 Temperature: Teh>>Teb
Hot-electron energy > 50 keV, ωdh~1-10 MHz
Edge temperature ~10-20 eV, ω*b ~1-10 KHz

 Pressure
Edge 0.01 Pa, Core 200 Pa.  --> Ratio ~ 10000
Beta (local maximum) ~ 20%

 Confinement
Stored energy ~ 200 J, “τE” ~ 50 msec.

LDX Parameters in “High beta” Regime




