Effects of the Hot Electron Interchange Instability on Plasma Confined in a Dipolar Magnetic Field

Eugenio Ortiz

For the Levitated Dipole Experiment Team

Innovative Confinement Concepts 2006 Austin, Texas February 13-16, 2006

Outline

- Motivation for Dipole Fusion Concept
- Levitated Dipole Experiment (LDX)
 - Operation and plasma formation
 - Measurement of anisotropic high beta equilibrium
- Hot Electron Interchange (HEI) Instability
 - Dominant instability in LDX
 - High beta achieved only when HEI is stabilized with fueling
 - New observations of HEI in high beta

Levitated Dipole Fusion Concept

Key Advantages

- Internal ring with large plasma volume
- Simple non-interlocking coils design; good field utilization
- Steady state; High **beta**
- Theory suggests energy confinement can exceed particle confinement
- Advanced fuel cycle

Levitated Dipole Reactor

Kesner, et al. Nucl. Fus. 2002

Investigating the Dipole Concept

• Stability:

- LDX Phase I
- Can a dipole be stable at high beta?
- Energy Confinement:
 - Sufficient to burn advanced fusion fuels?
- Particle Confinement:

LDX Phase II

Levitation

- Can convection decouple τ_p and τ_E ?
- Engineering:
 - Superconducting magnet surrounded by fusion plasma?

The Levitated Dipole Experiment (LDX)

LDX Cross-Section/Operation

Supported Mode

- 1) Liquid Helium cools F-coil in charging station
- 2) Inductively charge F-coil (1 MA), C-coil discharges
- 3) Lift F-coil into position
- 4) Use ECRH (5 kW); create plasma
- 5) Run experiments safely for two hours
- 6) Lower F-coil back to recharge or discharge into charging station

Floating Coil Held Up by Thin Supports

Thin supports remain a major power loss

Typical High Beta Discharge

- High beta maintained in quasi-steady state
- Plasma diagnostics:
 - External magnetic flux loops, pick-up coils and hall sensors
 - X-ray detectors
 - Visible diode array
 - Fixed & swept Langmuir
 - Interferometer
- HEI observed during three distinct intervals
 - 1. Unstable plasmas
 - 2. High beta plasmas
 - 3. Afterglow plasmas

Magnetic Reconstruction of Plasma Equilibrium

- 26 measurements used to reconstruct pressure profile
- Simple model with four unknowns:
 - Peak pressure, *po*
 - Peak major radius, R_p
 - Profile steepness, g
 - Anisotropy, $p_{\perp} / p_{\parallel}$
- Constraints:
 - Flux through superconducting dipole held constant
 - R_p determined from X-ray camera image

$$J_{\phi} = \frac{\mathbf{D} \times \mathbf{v} p_{\perp}}{B^{2}} + \frac{\mathbf{D} \times \mathbf{k}}{B^{2}} (p_{\parallel} - p_{\perp})$$

$$p_{\perp} \approx p_{0} \left(\frac{R_{p}}{R_{\text{mid}}}\right)^{4g} \left(\frac{B_{\text{mid}}}{B}\right)^{p_{\perp}/p_{\parallel}-1}$$

$$g_{\perp}^{400} = \frac{800}{0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad 1.0 \quad 1.1 \quad 1.2}$$

$$R_{\text{mid}}$$

 $\mathbf{P} \vee \mathbf{w}$

 $\mathbf{P} \vee \nabla \mathbf{n}$

Anisotropic Fast Electrons Localized to ECRH Resonance

Record High Beta Discharge

- Shot 50513029
 - Optimal gas fueling
- Fixed from imaging
 - $R_{\text{peak}} = 0.75 \text{ m}$
 - $p_{\perp} / p_{\parallel} = 5$
- Magnetics fit
 - E_{total} = 330 J with 5 kW input
 - I_p = 3.4kA
 - Peak local **Beta** = 20%
- Equilibrium exceeds ideal MHD^N limit due to compressibility

$$\frac{-d\ln P}{d\ln V} > \frac{5}{3}$$

Diamagnetic Current

High **Beta** Control with Gas Puffing

- With sufficient neutral gas pressure, plasma enters high **beta** regime
- With insufficient neutral gas pressure, the plasma will become unstable (sometimes violently)
- A hysteresis in the observed thresholds implies the bifurcation of the low density unstable and stable high **beta** regimes
- Consistent with theory of the Hot Electron Interchange (HEI) instability

Physics of Hot Electron Interchange (HEI) Mode

- Interchange instability driven by fast electrons
- HEI instability resonates with the drift motion of fast electrons. Causes a REAL frequency, $\omega \sim m \omega_{d}$
- Stable beyond the usual ideal MHD Limit
- As documented in low **beta** dipole experiment (CTX), HEI has the following characteristics:
 - Rapid outward transport with broad frequency spectrum
 - Dominated by low-m numbers
 - Broad global radial mode structure
 - Nonlinear frequency sweeping corresponds to radial propagation of "phase-space holes"

Measure HEI Fluctuations

Floating Probes

- Floating potential fluctuations
 - High impedance, 50 K-Ohm
- Two thoriated tungsten probes
 - I=.99 cm, d=.16 cm, As=.3 cm²
- Wide-band (.5 to 500 MHz) amplifier

Mirnov Coils

- Poloidal magnetic fluctuations
 - On outer wall of equatorial plane
- Boron Nitride core
 - 200 turns of 30 Awg magnet wire
 - Boron Nitride ceramic spray
- Custom amplifier boards

EEO_ICC06_INVTLK

HEI Appear Under Three Conditions

- Continuous Bursts:
 - Unstable plasmas, low beta, low-density
- Minor Relaxation:
 - Short, low-amplitude, remains at high **beta**
- Total Energy Collapse:
 - Intense, large-amplitude, rapid density & fast electron beta loss

Continuous Bursts at Low Gas Fueling

- Unstable plasmas, low β
- Observed outward radial transport of fast electrons
- Coherent modes with low amplitude on edge floating potential, ± 20 V
- Frequency chirping up to 0.6 MHz
- Corresponding to 10-60 keV energetic electrons
- Prevents plasma buildup

Minor Relaxation Burst

- < 2 % **beta** loss
- Short burst duration, < .5 ms

```
High Density Regime
May 13, 2005 – Shot 35
Both Sources on,
∆Flux ~ .1 mWb
```

- High frequency, wide-band fluctuations
- Radially localized; detected only on adjustable probe near peak pressure
- Large amplitude fluctuations, ± 50 V

Total Energy Collapse When Fueling Drops

- Total (> 90%) beta loss
- Very rapid loss (~100 μs); outward radial transport
- Inward transport as well; spikes in X-ray signal
- Large amplitude (±60V) fluctuations
- Frequency chirping up to 1-5 MHz
- Corresponding to 100-400 keV fast electrons

Long Lasting HEI "Burst" in Afterglow

- Excite long instability bursts ≈ 40 ms!
- Complex (beautiful!) frequency spectrum evolves in time
- Largest amplitude fluctuations (±80-100V)

HEI \rightarrow Hysteresis in Gas Requirements

- High fueling needed to suppress HEI
- Increase density ⇒ increase beta
 - Low density regime evolves gas from walls
- Once stable, less fueling needed to maintain stability
- Without continuous puffing the plasma pumps required gas from chamber

 Bulk plasma must satisfy MHD adiabaticity condition Rosenbluth and Longmire, (1957)

$$\delta(p_b V^{\gamma}) = 0$$

where $V = \oint \frac{d\ell}{B}$ or $-\frac{d\ln p_b}{d\ln V} < \gamma^{-1}$

 Fast electron stability enhanced due to coupling of fast electrons to background ions

$$-\frac{d\ln\bar{n}_h}{d\ln V} < 1 + \frac{m_\perp^2}{24} \frac{\omega_{dh}}{\omega_{ci}} \frac{\bar{n}_i}{\bar{n}_h}$$

Krall (1966), Berk (1976)...

Simple Model: How To Get To High Beta

 Qualitative simple model to explain the hysteresis effects and how to get to high beta

Unstable regime has high *frac_h* with 40 keV electrons

- Unstable regime has high *frac_h* with 40 keV electrons
- Increasing gas fueling \rightarrow frac_h drops \rightarrow stable transition

• Unstable regime has high *frac_h* with 40 keV electrons

- Increasing gas fueling \rightarrow frac_h drops \rightarrow stable transition
- Beta increases free of HEI

• Unstable regime has high *frac*_h with 40 keV electrons

- Increase gas fueling \rightarrow frac_h drops \rightarrow stable transition
- Beta increases free of HEI
- Fast electrons now heat \rightarrow new higher stability limit

• Unstable regime has high *frac*_h with 40 keV electrons

- Increase gas fueling \rightarrow frac_h drops \rightarrow stable transition
- Beta increases free of HEI
- Fast electrons now heat \rightarrow new higher stability limit
- Finally high beta regime → stable to HEI so as long as puffing rate balances ECRH heating

EEO_ICC06_INVTLK

- As temperature of fast electrons increases so does stability limit
- Hysteresis is observed on the fueling requirements of the HEI because the stability curve shifts outward depending on the state of the hot electrons:
 - High fueling needed to suppress HEI in unstable regime
 - Less fueling required to do the same in high **beta** regime

Comparison of LDX with Nonlinear Code

- Use self-consistent, nonlinear, gyrokinetic simulation code to understand LDX instability behaviors
- HEI saturation level and extent of radial transport depends upon the fast electron fraction, $n_{hot}/n_{total.}$
 - When $n_{hot}/n_{total} \sim 0.35$, low-amplitude "relaxation burst"
 - When $n_{hot}/n_{total} > 0.5$, intense, strong radial transport is predicted
- Computation of perturbed diamagnetic current can be compared with Mirnov measurements:
 - After initial "linear" phase, strong radial transport causes edge magnetic field perturbations to reach levels *greater than* the unperturbed equilibrium fields.

Conclusions

- Phase I has been completed and equilibrium results demonstrate stable operation at high beta (see P1.029)
- Magnetic reconstruction of anisotropic equilibrium (see P1.028) returns peak local beta of 20% and 330 J at 5 kW of ECRH (see P1.031)
- Hot Electron Interchange Instability found to be the dominant instability in LDX Phase I
- High beta achieved only when HEI is stabilized with fueling (see P1.030)
- New observations of HEI in high beta include
 - Hysteresis stability/instability
 - Large perturbed magnetic fields
 - Rapid (~100 μ s) for complete loss of fast electrons

LDX Physics Team

- MIT
 - Jay Kesner
 - Alex Boxer
 - Jennifer Ellsworth
 - Ishtak Karim
 - Natalia Krasheninnikova
 - Alexei Kuznetsov
- Columbia University
 - Mike Mauel
 - Darren Garnier
 - Alexander Hansen
 - Eugenio Ortiz

* Graduate Students