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Abstract

During the past decade, new experiments with collisionless plasma confined by
magnetic dipoles have been built at Columbia University, MIT, and the University of
Tokyo. These have resulted in detailed observations of interchange instability,
convective mixing, and high-beta toroidal confinement without magnetic shear.

This poster discusses these new results with the aim of understanding linear,
nonlinear, and turbulent plasma physics due to interchange dynamics.

To date, observations show interchange modes to be fixed-boundary modes with
broad structures that are easily measured and understood theoretically.
Additionally, for a strong dipole magnet, interchange modes create wave-particle
kinetics that are essentially one-dimensional. Hence, observations of linear and
nonlinear MHD, fast-particle drift-resonances, transport in magnetospheric and
fusion systems, and the effects of strong plasma flows are dominated by low-
dimensional dynamics and show good agreement between observation, theory, and
numerical simulation.
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What We've Learned...

. Robust ECRH start-up

Profile control with multip

Gas programming yields

Fluctuations have “Fixed-

e-frequency ECRH

nigh beta
Boundary MHD" structures

Wave-particle dynamics are “One-Dimensional’

Turbulence spectrum dominated by machine size

Levitation causes “dramatic” confinement improvement
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Dipole Fusion Concept

ITER Levitated Dipole Reactor

>
30m 60 m
400-600 MW 500 MW
DT Fusion DD(He3) Fusion

Kesner, et. al. Nucl. Fus. 2002



Dipole Fusion Concept

o Advanced fusion fuel...

» D-D (*He) with active triton removal

» No tritium breeding; simplified fusion technology
® Requires...

» High plasma beta

» (Good plasma energy confinement

» Poor particle (i.e. triton) confinement

» High-field, high-temperature superconductors



What We've Learned #1 to #3;

Dipole Plasmas Are Easy to
Make and to Control

1. Robust microwave/ECRH plasma start-up

2. Pressure and density profile control is readily
obtained using multi-frequency ECRH

3. Controlling the neutral fueling rate stabilizes hot
electron interchange mode and produces high
beta quasi-steady anisotropic plasma



Today’s Dipole
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ECRH Sustained Dipole Plasmas
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LDX: High Beta on First Shot!

Peak pressure “in-between”
2.45 and 6.4 resonance.
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Multi-Frequency ECRH
Profile Control...

Plasma Photos
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DENSITY PROFILE CONTROLLED BY ECRH
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What We've Learned #4:

Dipole Plasma Dynamics
Dominated by "MHAD-Like"
Interchange Modes

* Kinetic and centrifugal/gravity modes have broad
radial structures just like “fixed-boundary” ideal
MHD modes.

* Potential fluctuations constant along B

 Kinetic effects stabilize higher m modes near
marginal stability. m = 1 usually dominates.



Dipole Interchange Modes have
Broad Radial Structures

Centrifugal Interchange Hot Electron Interchange
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(Computed, self-consistent, mode structures shown with solid lines.)



Measured Centrifugal Mode Structure
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Measured Kinetic Interchange Mode:

Structure of Driven Polar Losses
(A Kinetic MHD Mode)
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Relative Strength of Centrifugal and Curvature Drives
Determine Nonlinear Mode Structure
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ldeal MHD

The ideal MHD equations are
dV

on
“Z4V-nV = 0
TR
E4+VxB = 0
V-J =0
OP

where v = 5/3.

Rosenbluth and Langmuir, 1957



E-B =0, E=-Vd, axial symmetry, B = Vp x Vi, |and the

electric potential, (v, ¢), is constant along a field line.

The plasma flow is two-dimensional,
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Low-frequency (w < wpg) plasma dynamics is well described by
flux-tube averaged motion!

“==""""Interchange motion

(...ballooning more stable than interchange.)



Typical Ideal Interchange Eigenmodes

Unstable “LDX”

'JnStable m = 1: y = {0.31, 0.14, 0.093)
0.15}

Pressure Peak

e L B (Radial structure variation always slows mode.)



What We've Learned #5:

Wave-Particle Dynamics in a Laboratory

Dipole is One-Dimensional
(at least for kinetic-interchange modes)

(M, J) remains invariant even during chaotic radial
transport.

Phase-space “holes™ have long lifetimes during frequency
sweeping.

"Holes™ can be destroyed with low-power RF scattering.

High beta electron transport can be very small or rapid
and disruptive.



Drift-Resonances: Phase-Space “Holes’

Dmitry Maslovsky, PhD 2003
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Nonlinear Simulation Reproduces Measured
Frequency Sweeping Suppression

Dmitry Maslovsky, PhD 2003
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Eugenio Ortiz, PhD 2006

At high B, periodic “relaxation”

events occur a few times per second.

Outward motion of ring currrent.
(Also, x-ray and pwave bursts !)

Depending upon neutral fueling and
heating power, relaxation events can
be small or fully disrupt high-beta
regime.

HEI can appear in (nearly?) all cases

LDX is the first to observe the HEI in
a high-beta dipole plasmal!
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Three Types of Fast Electron Interchange Spectra

Chaotic Chaotic Nonlinear
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What We've Learned #6:

Turbulence in a Laboratory Dipole has
Length Scales Dominated by the
System Size

* Power-law spectrum for convective turbulence.

* Low-frequencies (in the rotating plasma frame)
characterize the dominant long wavelengths.

* Transients and phase-transitions mediated by
large m = 1 rotating perturbations.



Evolution of Spectrum with Gas Fueling Rate Change

Brian Grierson

Matt Worstell
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What We've Learned #7:

Levitation Causes “Dramatic’
Confinement Improvement
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Still Many Unanswered Questions...

o What (and why) are the particle and energy
transport rates?

e How do these rates depend upon the convective
turbulence?

¢ \What are the characteristics of the convective/
turbulent transport as profiles are adjusted? Why?

¢ |s thermal transport adiabatic in a dipole plasma?



Summary

Dipoles provide magnetic confinement for hot plasma in nature and in the
laboratory (and dipole physics may help fusion energy!)

The dipole has a unique field structure for study of confined plasma:
unmatched diagnostic access, well-characterized magnetic geometry, and
fascinating (and musical) wave-particle interactions.

Two types of global interchange instabilities excited/modeled:

» Hot electron interchange (fast) modes illustrate collisionless dynamics
with “phase-space” mixing and “bubbles”.

» Centrifugal interchange (slow) modes illustrate MHD mass flows and
convective mixing.

The world’s first high-beta (B > 20%) dipole-confined plasma has been
created in LDX by stabilization of the fast-electron interchange instability
with programmed gas fueling.



