

Overview of LDX Results

Jay Kesner, A. Boxer, J. Ellsworth, I. Karim

MIT

Columbia University

D.T. Garnier, A. Hansen, M.E. Mauel, E.E. Ortiz Columbia University

Paper VP1.00020

Presented at the APS Meeting, Philadelphia, November 2, 2006

Outline of Poster

- Introduction to LDX
- MHD Equilibrium: High β results with ECRH
 - \triangleright β_{max} ~20% with P_{ECRH} ~5 KW, p_{\perp}/p_{\parallel} ~5
- Hot electron interchange instability observed
 - Controlled by gas puffing affecting n_{eh}/n_i
- Low frequency drift modes
 - Controlled by gas puffing effecting grad(n_{eb})
- Power source implications
 - > Ideal for advanced fuel DD reactor
- Future plans and conclusions

LDX Cross-Section/Operation

Supported Mode

- Liquid Helium cools F-coil in charging station
- Inductively charge F-coil (1 MA), C-coil discharges
- 3) Lift F-coil into position
- Use ECRH (5 kW); create plasma
- 5) Run experiments safely for two hours
- 6) Lower F-coil back to recharge or discharge into charging station

The Levitated Dipole Experiment (LDX)

LDX utilizes 3 operating superconducting magnets

- Floating coil: (shown) Nb³Sn (1.5 MA)
- Charging coil: NbTi (12 MJ, B_{max}=5.6T, 4.5K) Levitation coil: High Tc, BSSCO-2223 (20 kJ at 20K) Ref: Garnier et al., to be published in Fusion Engineering and Design (2006).

Dipole Plasma Confinement

If $p_1V_1^{\gamma} = p_2V_2^{\gamma}$, then interchange does not change pressure profile.

For
$$\eta = \frac{d \ln T}{d \ln n} = \frac{2}{3}$$
, density and

temperature profiles are also stationary.

- Toroidal confinement without toroidal field
 - Stabilized by plasma compressibility
 - Shear free
- Poloidal field provided by internal coil
 - Steady-state w/o current drive
 - J_{||} = 0 ⇒ no kink instability drive
 - No neoclassical effects
 - No TF or interlocking coils

 - Convective flows transport particles w/o energy transport

Dipole Stability Results from Compressibility

No compressibility:

"bad" $\kappa \& \nabla B$ drifts causes charge separation \Rightarrow

V_{ExB} increases perturbation

 With compressibility: as plasma moves downwards pressure decreases. For critical gradient there is no charge buildup

Density gradient. Compressibility: Density decreases as plasma moved downward.

In bad curvature pressure gradient is limited to
$$-\frac{d \ln p}{d \ln V} < \gamma$$
 $V = \oint dl/B$

Typical High Beta Discharge

- High beta maintained in quasi-steady state
- Plasma diagnostics:
 - External magnetic flux loops, pick-up coils and hall sensors
 - X-ray detectors
 - Visible diode array
 - Fixed & swept Langmuir
 - Interferometer
- HEI observed during three distinct intervals
 - 1. Unstable plasmas
 - 2. High beta plasmas
 - 3. Afterglow plasmas

Magnetic Equilibrium Reconstruction

- Equilibrium reconstruction demonstrate that plasmas with high local beta are created in LDX
- X-ray images show the fast electrons to be localized at the ECRH resonance. The fast electrons are anisotropic.
- Anisotropic equilibria are well fit to magnetic measurements. The equilibria have pressure gradients that exceed the usual MHD instability limits.
- New magnetic diagnostics will be installed closer to the plasma to distinguish more details of the pressure profile.

Magnetic Reconstruction

- Use pressure model from [Connor, Hastie, PF19, (1976)], $p_{\parallel}(\psi,B) = p_0(\psi)(B_0(\psi)/B)^2 p \quad \text{and} \quad p_{\perp}(\psi,B) = (1+2p) \quad p_{\parallel}(\psi,B)$ p is a constant p = 1/2 ($p_{\perp}/p_{\parallel}-1$) and 0 subscript is for midplane.
- Parallel momentum balance gives $J_{\phi} = \frac{B \times \nabla p_{\perp}}{B^2} + (p_{\parallel} p_{\perp}) \frac{B \times \kappa}{B^2}$
- Use 26 magnetic measurements to reconstruct profile
- Pressure model: $p_0(\psi) = p_{peak} \frac{(\psi \psi_{fcoil})}{(\psi_{peak} \psi_{fcoil})} (\psi / \psi_{peak})^{4g}$ optimize the fit varying p_{peak} , ψ_{peak} & g.

• We can obtain ψ_{peak} from X-ray measurements and find this yields best fits.

Anisotropic Interchange Stability

- Anisotropic momentum balance: $\frac{\partial p_{||}}{\partial B} = \frac{p_{||} p_{\perp}}{B}$ $\frac{\partial p_{\perp}}{\partial B} = \frac{c + 2p_{\perp}}{B}$
- A convenient form for pressure is [Connor,Hastie, PF19,(1976)]: $p_{\parallel}(\psi,B) = p_0(\psi)(B_0(\psi)/B)^{2p}$ and $p_{\perp}(\psi,B) = (1+2p)p_{\parallel}(\psi,B)$ $B_0(\psi)$ is the magnetic field on the outer midplane
- Defining $V_p = \oint d\ell/B^{(1+2p)}$ and $\hat{\gamma} = \frac{5}{3} \frac{1 + (4/5)p}{1 + (4/3)p}$ the interchange stability requirement becomes [Simakov, Hastie, Catto Ph.P 7 (2000)] $-\frac{d \ln p_0}{d \psi} < \hat{\gamma} \frac{d \ln V}{d \psi} + 2p \frac{d \ln B_0}{d \psi}$
- For p=0 (isotropic pressure) obtain: $-\frac{d \ln p_0}{d \psi} < \gamma \frac{d \ln V_0}{d \psi}$ $V_0 = \oint d\ell/B$
- For $p \neq 0$ find requirement: $-\frac{d \ln p_0}{d \psi} < \hat{\gamma} \frac{d \ln V_p}{d \psi} + 2p \frac{d \ln B_0}{d \psi}$

Anisotropic Fast Electrons Localized to ECRH Resonance

Anisotropy Significantly Changes Pressure Profile Height

Figure 1: Example anisotropic pressure profiles with $G(\psi)$ defined with g=4 and ψ_0 located at r=0.77 m. The anisotropy parameter was p=0,1,2,3 and 3.

Anisotropic Magnetics Reconstruction

- Shot 50513029
- Fixed from imaging

$$p_{\perp}/p_{\parallel}=5$$

- Magnetics fit
 - Etotal = 330 J with 5 kW input
 - $I_p = 3.4kA$
 - β_{max} ~ 20%
 - $g=2.1*\gamma$,

 ∇p exceeds MHD

Hot Electron Interchange Stability

Bulk plasma must satisfy MHD adiabaticity condition

$$\delta\left(p_b\,V^{\gamma}
ight)=0$$
 where $V=\ointrac{d\ell}{R}$ or $-rac{d\ln p_b}{d\ln V}<\gamma^{-1}$

 Fast electron stability enhanced due to coupling of fast electrons to background ions

Krall, (1966)

$$-\frac{d\ln n_{eh}}{d\ln V} < 1 + \frac{m_{\perp}^2}{24} \frac{\omega_{dh}}{\omega_{ci}} \frac{N_i}{N_{eh}}$$

HEI Appear Under Three Conditions

See poster VP1.00024, Ortiz et al

- Continuous Bursts:
 - Unstable plasmas, low beta, low-density
- Minor Relaxation:
 - Short, low-amplitude, remains at high beta
- Total Energy Collapse:
 - Intense, large-amplitude, rapid density & fast electron beta loss

Physics of Hot Electron Interchange (HEI) Mode

- Interchange instability driven by fast electrons
- HEI instability resonates with the drift motion of fast electrons. Causes a REAL frequency, $\omega \sim m \omega_a$
- Stable beyond the usual ideal MHD Limit
- As documented in low beta dipole experiment (CTX),
 HEI has the following characteristics:
 - Rapid outward transport with broad frequency spectrum
 - Dominated by low-m numbers
 - Broad global radial mode structure
 - Nonlinear frequency sweeping corresponds to radial propagation of "phase-space holes"

High **Beta** Control with Gas Puffing

- With sufficient neutral gas pressure, plasma enters high beta regime
- With insufficient neutral gas pressure, the plasma will become unstable (sometimes violently)
- A hysteresis in the observed thresholds implies the bifurcation of the low density unstable and stable high **beta** regimes
- Consistent with theory of the Hot Electron Interchange (HEI) instability

High-β Plasma Begins Upon HEI Stabilization

In unstable regime, quasi-continuous HEI instability prevents plasma build-up ...

Plasma can be unstable to drift frequency mode

- Entropy mode properties [1]
 - Plasma beyond pressure peak stable for η> 2/3
 - Frequency $\omega \sim \omega_{\star} \sim \omega_{\rm d}$ ω increases with ∇n_e and T_b
 - Instability will relax plasma towards d=5/3, η=2/3.

i.e. it tends to steepen ∇n_e

- Stability in good curvature region depends on sign of ∇n_e
- Mode appears at both high and low collisionality [2].
- Electrostatic "entropy" mode persists at high β [3].
- <u>Linear theory not always relevant to</u>
 <u>real plasmas</u>

$$\begin{split} \eta &= d\ln T/d\ln n_e \\ d &= -d\ln p/d\ln V = \omega_{*_i}(1+\eta)/\overline{\omega_d} \\ V &= \oint dl/B \end{split}$$

Some references:

- 1. Kesner, PoP 7, (2000) 3837.
- 2. Kesner, Hastie, Phys Plasma 9, (2002), 4414
- 3. Simakov, Catto et al, PoP 9, (2002), 201

10/30/06

Plasma can be unstable to drift frequency mode

- Entropy mode is a drift frequency, flute mode.
- Dispersion Relation $\hat{\omega} = \omega / \langle \omega_{di} \rangle$, $d = -\frac{d \ln p}{d \ln V} = (1+\eta) \frac{\omega_{*i}}{\langle \omega_{di} \rangle}$, $\eta = \frac{d \ln T}{d \ln n}$

$$\hat{\omega}^2 \left(\frac{d \ln p}{d \ln V} + \frac{5}{3}\right) + \frac{5\hat{\omega}}{3} \left(\frac{T_e}{T_i} - 1\right) \left(\frac{d \ln p/d \ln V}{1 + \eta} + 1\right) + \frac{5}{9} \frac{T_e}{T_i} \left(\frac{d \ln p}{d \ln V} \frac{3\eta - 7}{\eta + 1} - 5\right) = 0$$

Quasi-coherent low frequency mode

- Under good vacuum conditions $p_0 < 10^{-6}$, quasi-coherent low frequency activity observed: f < 10 kHz
- Mode seen on Mirnov, edge probes, photodiodes, interferometer.
- Gas fueling can change frequency or stabilize mode
 - ➤ Cutoff fueling ⇒ mode frequency rises
 - ➤ Sufficient fueling ⇒quasi-coherent mode disappears
 - Gas fueling tends to flatten the density gradient as seen in 60 GHz μ-wave interferometer array.
- Mirnov array indicates toroidal mode # m=1

Low Frequency Fluctuations Modified by Density Gradier

Mode appears to be m=1

Use 8 Mirnov coils separated by 45 degrees

Ref: Beall, Kim, Powers, J App Phys 6 (82) 3933.

For 5<t<6s,
coil separation 45 deg
Mirnov coils, 7 with 6

Mirnov coils

Fluctuations Suppressed wit Flat Gradient

Requirements for "Ideal" fusion power source

- MHD does not destroy confinement (no disruptions)
- Intrinsically Steady State
- High β for economic field utilization
- High τ_E necessary for ignition
 - Ignition in small device
 - Advanced fuels (D-D, D-3He)
- Low τ_P for ash removal
- Low divertor heat load want plasma outside of coils for flux expansion
- Circular, non-interlocking coils

Levitated dipole may fulfill these requirements if the physics and technology does not produce show-stopper.

Fusion reactions of primary interest

$$D + T \rightarrow {}^{4}He(3.5 \ MeV) + n(14.1 \ MeV)$$

 $D + {}^{3}He \rightarrow {}^{4}He(3.6 \ MeV) + p(14.7 \ MeV)$
 $D + D \xrightarrow{50\%} {}^{3}He(0.82 \ MeV) + n(2.45 \ MeV)$
 $D + D \xrightarrow{50\%} T(1.01 \ MeV) + p(3.02 \ MeV)$

- D-T: Highest fusion x-section
 - Must breed tritium
 - 14.1 MeV neutrons (a) Damage and activate structure
 - (b) Necessitate a massive shield
- D-3He: Lower x-section, reduced neutron flux
 - 3He source requires lunar mining
- D-D: Smallest x-section Ignition requires decoupling of particle and energy confinement [Ref: Nevins, JFE 17 (1998) 25.]
 - Plentiful fuel source
 - Can eliminate energetic energetic neutrons if we can eliminate tritium
 - Fusion products mostly charged particles eliminate blanket and shield
 - high power/volume

Helium Catalyzed D-D (self fueled D-3He cycle)

- Primary D-D reaction produces
 3.65 MeV plus T & ³He.
- Permit the ³He to burn.
 - D-3He produces 18.3 MeV.

- Remove T and re inject the ³He decay product (T -> ³He + e⁻).
 - Some T will fuse (4 to 6%) before removal, (during slowing down).
- This produces 22 MeV per DD fusion with 94% of power in charged particles (along with a 2.45 MeV neutron)
 - Surface heating -> thin walled vessel with high power density
 - 2.45 MeV neutron produces little structural damage

Ref: Sawan et al, Fus Eng and Design 61-62 (2002), 561.

Kesner et al., Nuc Fus 44 (2004) 193.

Next Step: Levitation

- Fast electron losses to supports eliminated
 - Pitch angle scattering reduce anisotropy, not beta
 - Anisotropy driven modes relax plasma without losses
- Bulk plasma confinement also improved
 - Stable fast electron fraction with lower neutral gas fueling?
- Radial transport driven profiles
 - Single peaked, broader (more stable) profiles
- Expectation of improved stability and confinement
 - Contrast with supported operation will further understanding of unstable/high-β regime bifurcation.

Conclusions and Future Plans

- LDX is novel in both physics and technology
 - Only superconducting experiment in US program
- LDX began operation on 2004: Observe 3 operating regimes
 - In high n_e regime β ~20%, T_{eh} ~50 KeV.
 - Observe MHD events (HEI limits).
 - Multiple frequency ECRH provides profile control.
 - Can operate with magnetic separatrix
 Shaping coil permits variation of flux expansion.
- Levitation experiments planned for late fall
 - Will eliminate pitch-angle scatter as loss mechanism
 - Expect substantial increase in plasma parameters
 - 10.5 GHz to be brought on line
 - Later 18 and 28 GHz