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Outline of Poster
 Introduction to LDX
 MHD Equilibrium: High β results with ECRH

βmax~20% with PECRH~5 KW,
 Hot electron interchange instability

observed
Controlled by gas puffing affecting neh/ni

 Low frequency drift modes
Controlled by gas puffing effecting grad(neb)

 Power source implications
 Ideal for advanced fuel DD reactor

 Future plans and conclusions
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The Levitated Dipole Experiment (LDX)

  LDX utilizes 3 operating  superconducting magnets
  Floating coil: (shown) Nb3Sn (1.5 MA)
  Charging coil: NbTi (12 MJ, Bmax=5.6T, 4.5K)
  Levitation coil: High Tc, BSSCO-2223 (20 kJ at 20K)
     Ref: Garnier et al., to be published in Fusion Engineering and Design (2006).
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Dipole Plasma Confinement
 Toroidal confinement without

toroidal field
 Stabilized by plasma

compressibility
 Shear free

 Poloidal field provided by internal
coil
 Steady-state w/o current drive
 J|| = 0 no kink instability

drive
 No neoclassical effects
 No TF or interlocking coils
 p constraint small plasma

in large vacuum vessel
 Convective flows transport

particles w/o energy transport

If p1V1

! = p2V2

! ,  then interchange does 

not change pressure profile.

For ! =
d lnT

d ln n
=

2

3
,  density and 

temperature profiles are also stationary.
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Dipole Stability Results from Compressibility
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 No compressibility:
“bad”    &      drifts causes

charge separation 
VExB increases perturbation

 With compressibility: as
plasma moves downwards
pressure decreases. For
critical gradient there is no
charge buildup

In bad curvature pressure
gradient is limited to
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Magnetic  Equilibrium Reconstruction
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Magnetic Reconstruction
 Use pressure model from [Connor,Hastie, PF19,(1976)],

                                                       and
p is a constant                        and 0 subscript is for midplane.

  Parallel momentum balance gives
 Use 26 magnetic measurements to reconstruct profile
 Pressure model:

optimize the fit varying ppeak, ψpeak & g.

 We can obtain ψpeak from X-ray measurements and find
this yields best fits.
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Anisotropic Interchange Stability
 Anisotropic momentum balance:

 A convenient form for pressure is [Connor,Hastie, PF19,(1976)]:
                                                and

 B0(ψ) is the magnetic field on the outer midplane

 Defining                          and                            the interchange
stability requirement becomes [Simakov, Hastie, Catto Ph.P 7 (2000)]

 For p=0 (isotropic pressure) obtain:

 For            find requirement:
       Evaluating RHS for p=2 critical gradient increases 3%. Anisotropy 

does not significantly change stability limit.

! 

"p
||

"B
=
p
||
# p
$

B

! 

"p
#

"B
=
c+2p

#
B

! 

p
||
(",B)= p

0
(")(B

0
(")/B)2p

! 

p
"
(#,B)= (1+2p)p

||
(#,B)

  

! 

V
p

= dl /B(1+ 2 p)"

! 

ˆ " = 5
3

 
1+(4 /5)p
1+(4 /3)p

! 

"
d ln p

0

d#
< ˆ $ d lnV

d#
+2p

d lnB
0

d#

! 

"
d ln p

0

d#
<$

d lnV
0

d#

! 

p"0

  

! 

V
0

= dl /B"

! 

"
d ln p

0

d#
< ˆ $  

d lnV
p

d#
+2p

d lnB
0

d#

! 

"



10/30/06 11



10/30/06 12



10/30/06 13

• g=2.1*γ, 
        exceeds MHD
limit
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See poster VP1.00024, Ortiz et al
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Plasma can be unstable to drift frequency mode

! 

" = d lnT /d lnne

d = #d ln p /d lnV =$*i(1+") /$d

V = dl /B%

d > 0 indicates “bad curvature” 

Some references:
1. Kesner, PoP 7, (2000) 3837.
2. Kesner, Hastie, Phys Plasma 9, (2002), 4414
3. Simakov, Catto et al, PoP 9, (2002), 201

 Entropy mode properties [1]
 Plasma beyond pressure peak

stable for η> 2/3

 Frequency ω ~ ω* ~ ωd

    ω increases with        and Tb

 Instability will relax plasma towards
d=5/3, η=2/3.

i.e. it tends to steepen
 Stability in good curvature region

depends on sign of
 Mode appears at both high and low

collisionality [2].
 Electrostatic “entropy” mode persists at

high β [3].

 Linear theory not always relevant to
real plasmas
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Plasma can be unstable to drift frequency mode

• Entropy mode is a drift frequency, flute mode.

• Dispersion  Relation                                                                

Real frequency is  introduced for 
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Quasi-coherent low frequency mode
 Under good vacuum conditions p0<10-6, quasi-coherent

low frequency activity observed: f <10 kHz
 Mode seen on Mirnov, edge probes, photodiodes,

interferometer.
 Gas fueling can change frequency or stabilize mode

 Cutoff fueling mode frequency rises
  Sufficient fueling quasi-coherent mode disappears

 Gas fueling tends to flatten the density gradient as seen in 60 GHz
µ−wave interferometer array.

 Mirnov array indicates toroidal mode # m=1
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Mode appears to be m=1
Use 8 Mirnov coils separated by 45 degrees
Ref: Beall, Kim, Powers, J App Phys 6 (82) 3933. 
For 5<t<6s, 
coil separation 45 deg                                     90 deg
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Conclusions and Future Plans
• LDX is novel in both physics and technology

– Only superconducting experiment in US program
• LDX began operation on 2004: Observe 3 operating regimes

– In high ne regime β~20%, Teh~50 KeV.
– Observe MHD events (HEI limits).
– Multiple frequency ECRH provides profile control.
– Can operate with magnetic separatrix

Shaping coil permits variation of flux expansion.
• Levitation experiments planned for late fall

– Will eliminate pitch-angle scatter as loss mechanism
– Expect substantial increase in plasma parameters
– 10.5 GHz to be brought on line

• Later 18 and 28 GHz




